Chapitre 4: Application aux fonction élémentaires (fonctions usuelles)

4-1 La fonction puissance

4-1-1 Définition : Pour tout réel strictement positif a, on appelle fonction exponentielle de base a l'application de \mathbb{R} dans \mathbb{R}_+^* définie par $x \longmapsto a^x = e^{x \ln a}$ (\ln : logarithme népérien).

Remarque:

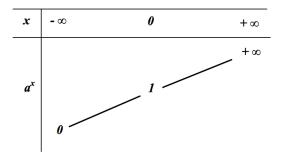
• La fonction exponentielle est la fonction exponentielle de base e. Si a=1 on a $\forall x \in \mathbb{R}$ $a^x=1$.

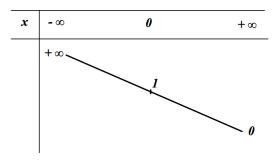
4-1-2 Propriétés algébriques

Soit a et b deux réels strictement positifs. Pour tous réels x et y on a : $x^{x+y}=a^x\cdot a^y$; $(a^x)^y=a^{xy}$; $(a\cdot b)^x=a^x\cdot b^x$.

4-1-3 Les tableaux de variations

$$a^0 = 1.$$



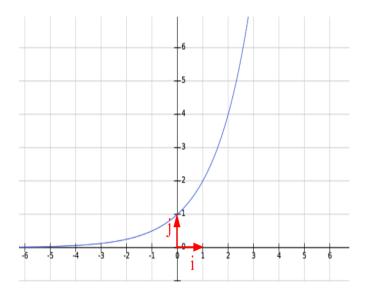


$$\lim_{x \to -\infty} \frac{a^x}{x} = -\infty$$

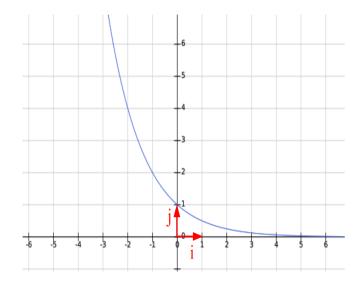
4-1-4 Représentation graphique

$$a > 1$$

$$\lim_{x \to +\infty} \frac{a^x}{x} = +\infty$$



$$0 < a < 1 \quad \lim_{x \to -\infty} \frac{a^x}{x} = -\infty$$



Remarque : Les courbes représentatives des fonctions $x \longmapsto a^x$ et $x \longmapsto (\frac{1}{a})^x$ sont symétriques par rapport à l'axe (O, \overrightarrow{j})

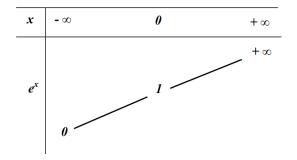
4-2 Les fonctions exponentielles

4-2-1 Définition : La fonction exponentielle est l'unique fonction fdérivable sur \mathbb{R} telle que : f(0) = 1 et $\forall x \in \mathbb{R}$ f'(x) = f(x)L'image d'un réel x par la fonction exponentielle et notée e^x .

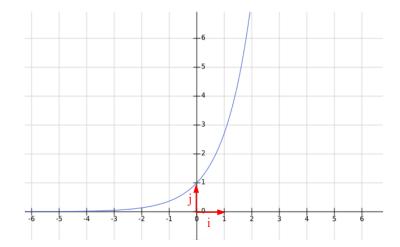
4-2-2 Propriétés algébriques

- 1) $e^0 = 1$, e = 2.718282) $\forall (x, y) \in \mathbb{R}^2$ $e^{x+y} = e^x \cdot e^y$
- 3) $\forall x \in \mathbb{R}$ $e^{-x} = \frac{1}{e^x}$ 4) $\forall x, y \in \mathbb{R}$, $e^{xy} = (e^x)^y$

4-2-3 Tableau de variation



4-2-4 Représentation graphique



On d'autre part $\lim_{x\to+\infty}\frac{e^x}{x}=+\infty$, donc la courbe représentative admet une branche parabolique dans la direction \overrightarrow{j} .

4-3 Fonction logarithme népérien

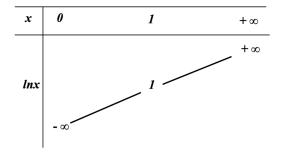
4-3-1 Définition : la fonction logarithme népérien notée ln est la fonction réciproque de la fonction exponentielle, la fonction ln est donc l'application de \mathbb{R}_+^* dans \mathbb{R} définie par $(y = \ln x, x \in \mathbb{R}_+^*) \Leftrightarrow (x = e^y, y \in \mathbb{R})$

La fonction ln est dérivable sur \mathbb{R}_+^* et sa dérivée et la fonction $x \longmapsto \frac{1}{x}$.

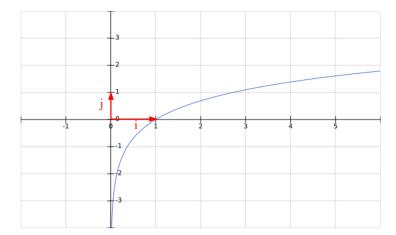
4-3-2 Propriétés algébriques

- 1) $\ln 1 = 0$, $\ln e = 1$;
- 2) $\forall (x,y) \in \mathbb{R}_{+}^{*} \times \mathbb{R}_{+}^{*} \ln xy = \ln x + \ln y$; 3) $\forall x \in \mathbb{R}_{+}^{*} \ln \frac{1}{x} = -\ln x$; 4) $\forall \alpha \in \mathbb{R} \ln x^{\alpha} = \alpha \ln x$; 5) $\ln \frac{x}{y} = \ln x \ln y$.

4-3-3 Tableau de variation



4-3-4 Représentation graphique



On a d'autre part $\lim_{x\to +\infty} \frac{\ln x}{x} = 0$, donc la courbe représentative admet une branche parabolique dans la direction \overrightarrow{i} .

4-4 Fonctions hyperboliques

4-4-1 Définitions:

Les fonctions sinus hyperbolique, cosinus hyperbolique, tangente hyperbolique sont les fonctions définiés sur \mathbb{R} respectivement par : $shx = \frac{e^x - e^{-x}}{2}$; $chx = \frac{e^x + e^{-x}}{2}$; $thx = \frac{shx}{chx}$

$$shx = \frac{e^x - e^{-x}}{2}$$
; $chx = \frac{e^x + e^{-x}}{2}$; $thx = \frac{shx}{chx}$

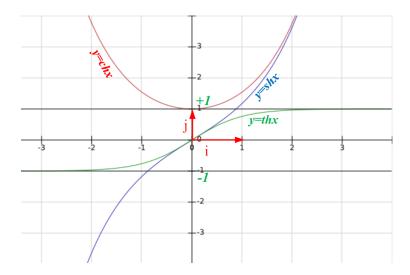
Remarque:

 $\overline{\text{Les fonctions}}$ sh et th sont des fonctions impaires, la fonction ch est paire.

4-4-2 Tableau de variation

x	0 +∞
shx	<i>0</i> → +∞
chx	1+∞
thx	0

4-4-3 Représentation graphique



$$\lim_{x \to +\infty} \frac{shx}{x} = +\infty \qquad \lim_{x \to +\infty} \frac{chx}{x} = +\infty$$

4-4-4 Propriétés algébriques

 $\forall x, y$ des réels on a :

1)
$$shx + chx = e^x$$
, $ch^2x - sh^2x = 1$, $thx = \frac{e^{2x} - 1}{e^{2x} + 1}$;

$$2)$$
 $sh(x+y) = shx.chy + shy.chx$

3)
$$ch(x+y) = chx.chy + shx.shy$$

4)
$$sh2x = 2shx.chx = \frac{2thx}{1-th^2x}, ch(2x) = 2ch^2x - 1$$

5)
$$th2x = \frac{2thx}{1+th^2x}$$

2)
$$sh(x+y) = shx.chy + shy.chx$$

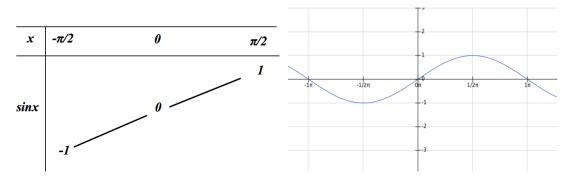
3) $ch(x+y) = chx.chy + shx.shy$
4) $sh2x = 2shx.chx = \frac{2thx}{1-th^2x}$, $ch(2x) = 2ch^2x - 1$
5) $th2x = \frac{2thx}{1+th^2x}$
6) Dérivées : $sh'x = chx$; $ch'x = shx$; $th'x = 1 - th^2x$

4-5 Les fonctions trigonométriques

4-5-1 La fonction sinus, la fonction cosinus:

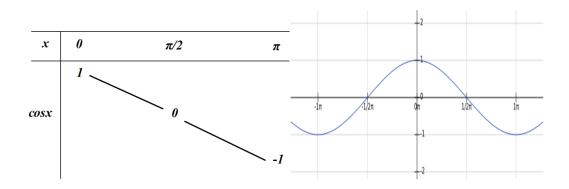
La fonction $f(x) = \sin x$ est une fonction impaire définie de $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \to [-1, 1].$ $f'(x) = \cos x.$ f(0) = 0, f(x) est croissante.

• Tableau de variation et représentation graphique



La fonction $\cos x$ est une fonction paire sa dérivée est $-\sin x$, elle est décroissante.

• Tableau de variation et représentation graphique



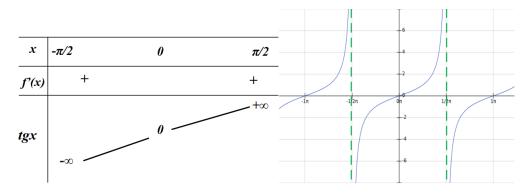
4-5-2 Les propriétés algébriques

$$\sin^2 \alpha + \cos^2 \alpha = 1$$
 α : angle $\sin(\alpha + \beta) = \sin \alpha \cos \beta + \sin \beta \cos \alpha$ $\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$

4-5-3 La fonction tangente et la fonction cotangente

La fonction tangente $tgx = \frac{\sin x}{\cos x}$ est une fonction impaire définie de $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \to \left[-\infty, +\infty\right]$, sa dérivée $(tgx)' = \left(\frac{\sin x}{\cos x}\right)' = \frac{1}{\cos^2 x} = 1 + tg^2 x$. La dérivée est positive > 0, elle est continue et croissante.

• Tableau de variation et représentation graphique

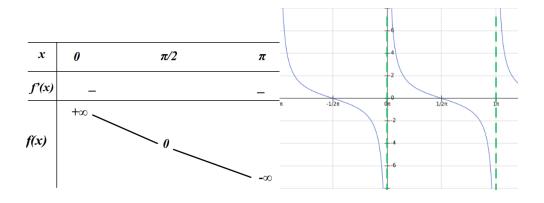


La fonction cotangente $\cot gx = \frac{\cos x}{\sin x}$ une fonction continue et décroissante sur Df

$$\cot gx:]0, \pi[\rightarrow] - \infty, +\infty[$$

$$(\cot gx)' = (\frac{\cos x}{\sin x})' = \frac{-1}{\sin^2 x} < 0 \ \forall x \in Df$$

• Tableau de variation et représentation graphique



4-6 Les fonction réciproques

4-6-1 Définitions

1) Soit f une fonction définie de I dans J la fonction f admet une réciproque f^{-1} si et seulement si elle était continue en tout point de I et monotone (strictement croissante, ou décroissante) en d'autre terme si f est une bijection de I dans J alors elle admet une fonction réciproque notée f^{-1} .

2) La dérivée de la fonction réciproque

soit f une bijection qui va de I dans $J f: I \to J \ x_0 \in I \text{ et } f(x_0) = y_0 \in J$ On suppose que f est dérivable au point x_0 et $f'(x_0) \neq 0$ et f^{-1} continue en y_0 cependant:

 f^{-1} dérivable en y_0 ; alors: $(f^{-1})'(y_0) = \frac{1}{f'(x_0)} = \frac{1}{(f' \circ f^{-1})(y_0)}$

4-6-2 les fonction réciproque des fonctions hyperboliques

1) la fonction réciproque de shx

la réciproque de la fonction sinus hyperbolique est notée argument sinus hyperbolique : $shx : \mathbb{R} \to \mathbb{R}$ on sait que f(x) = shx est (continue et monotone) bijective et $f^{-1} \exists$.

 $f^{-1}: \mathbb{R} \to \mathbb{R} \ x \longmapsto \arg shx \ x \in \mathbb{R} \ y = \arg shx \Leftrightarrow x = shy.$ $sh(\arg shx) = shy \Leftrightarrow x = shy$

• La fonction $\arg shx = \ln(x + \sqrt{x^2 + 1}) \Rightarrow (\arg shx)' = \frac{1}{\sqrt{1 + x^2}} \quad \forall x \in \mathbb{R}$ $(\arg shf(x))' = \frac{f'(x)}{\sqrt{1 + f^2(x)}}$

2) La fonction réciproque de chx

La fonction $g: \mathbb{R}_+ \to [1, +\infty[$ définie par g(x) = chx bijective (continue et strictement croissante), donc g^{-1} existe et la réciproque est la fonction argument cosinus hyperbolique notée par arg $chx = \ln(x + \sqrt{x^2 - 1})$ $y = \arg chx \Leftrightarrow x = chy$. $chx : \mathbb{R}_x \to [1, +\infty[$

8

$$\arg chx : [1, +\infty[\to [0 \to, +\infty[$$

$$(\arg chx)' = \frac{1}{\sqrt{x^2 - 1}} \qquad (\arg chf(x))' = \frac{f'(x)}{\sqrt{f^2(x) - 1}}$$

3) La réciproque de thx

th a reciproque de that
$$thx = \frac{e^{2x}-1}{e^{2x}+1} \text{ définie } \forall x \in \mathbb{R}, \ e^{2x}+1>0 \ \forall x \in \mathbb{R}$$

$$thx : \mathbb{R} \to]-1,1[$$

$$\lim_{x \to -\infty} thx = -1 \quad \lim_{x \to +\infty} thx = +1 \quad (thx)' = 1-th^2x$$
 la réciproque est $\arg thx = \frac{1}{2} \ln \frac{1+x}{1-x} \quad \arg thx :]-1,1[\to \mathbb{R}$
$$(\arg thx)' = \frac{1}{1-x^2} \quad -1 < x < 1$$

$$(\arg chf(x))' = \frac{f'(x)}{1-f^2(x)} \quad |x| < 1$$

4) La réciproque de la fonction $\coth x$

$$\begin{split} \arg\coth x &= \frac{1}{2} \ln \frac{x+1}{x-1} \\ \coth x &: \mathbb{R} \backslash \{0\} \to] - \infty, -1[\cup]1, +\infty[\\ \ln & \text{réciproque de coth } x \text{ est notée arg coth } x. \\ \arg & \coth x :] - \infty, -1[\cup]1, +\infty[\to \mathbb{R}^* \\ \arg & \coth x = \frac{1}{2} \ln \frac{x+1}{x-1} \\ (\arg & \coth x)' = \frac{1}{1-x^2} \quad |x| > 1 \\ (\arg & \coth f(x))' &= \frac{f'(x)}{1-f^2(x)} \end{split}$$

4-6-3 Les réciproques des fonctions trigonométrique

1) La réciproque de la fonction sinus

 $\sin x : \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \to \left[-1, 1 \right]$ $\arcsin x : \left[-1, 1 \right] \to \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$ $\sin \arcsin x = x.$ $(\arcsin x)' = \frac{1}{\sqrt{1 - x^2}}$ $(\arcsin f(x))' = \frac{f'(x)}{\sqrt{1 - f(x)^2}} \quad \forall x \in]-1, 1[$ fonction impaire.

Exemple:

$$\frac{1}{\arcsin 0} = 0 \text{ ou } \pi$$
$$\arcsin -1 = -\frac{\pi}{2}$$

2) La réciproque de la fonction cosinus

 $\arccos x: [-1,1] \to [0,\pi]$ $\cos x: [0,\pi] \to [-1,1]$ $\cos \arccos x = x.$ $(\arccos x)' = \frac{-1}{\sqrt{1-x^2}} \ \forall x \in]-1,1[$ $(\arcsin f(x))' = \frac{-f'(x)}{\sqrt{1-f(x)^2}}$ fonction paire.

3) La réciproque de la fonction tangente

 $\begin{array}{l} tgx: \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \to \mathbb{R} \\ arctgx: \mathbb{R} \to \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \\ tg(arctgx) = x. \\ (arctgx)' = \frac{1}{x^2+1} \ \forall x \in \mathbb{R} \\ (arctgf(x))' = \frac{f'(x)}{f(x)^2+1} \\ arctg \ \text{s'annule en } 0 \end{array}$

4) La réciproque de la fonction cotangente

cot
$$gx = \frac{\cos x}{\sin x}$$
 cot $gx:]0, \pi[\rightarrow] - \infty, +\infty[$ cot $gx: [-1,1] \rightarrow [0,\pi]$ (cot $gx)' = \frac{-1}{\sin^2 x} = -(1+\cot g^2 x)$ sin $x=0 \Leftrightarrow x=0,\pi$ arccotgx s'annule en $\frac{\pi}{2}, \frac{-\pi}{2}$

$$\operatorname{arccot} gx :] - \infty, +\infty[\rightarrow]0, \pi[$$

$$(\operatorname{arccot} gx)' = \frac{-1}{1+x^2}$$

$$(\operatorname{arccot} gf(x))' = \frac{-f'(x)}{1+f(x)^2}$$

$$(\operatorname{arcsin} f(x))' = \frac{-f'(x)}{\sqrt{1-f(x)^2}}$$