$See \ discussions, stats, and \ author \ profiles \ for \ this \ publication \ at: \ https://www.researchgate.net/publication/378715928$

تخطيط النقل الحضري

Mustansiriyah University

104 PUBLICATIONS 370 CITATIONS

SEE PROFILE

Book · March 2024	
CITATIONS	READS
0	2,578
1 author:	
7ainah Ahmed Alkaissi	

All content following this page was uploaded by Zainab Ahmed Alkaissi on 05 March 2024.

تفطيط النقل الوضري

أ.د.زينب احمد القيسي

تخطيط النقل الحضري

الأستاذ الدكتورة زينب أحمد القيسي

الجامعة المستنصرية - كلية الهندسة – قسم الطرق والنقل

dr.zainabalkaissi77@uomustansiriyah.edu.iq الإيميل:

الإهراء

بكل الحب والتقدير والإحترام، اهدي هذا الكتاب الى روح والدي راجيًا أن يكون حسنة وصدقة عنه، إليك أبي الحاضر دومًا رغم الغياب.

إلى أسمى أيات العطاء البشري، إلى رمز العطاء والمحبة، إلى أمي الغالية أهدي هذا الكتاب عسى ان اكون مصدر فخر لك.

زينب

تهيد

ولله الحمد والشكر على إكال هذا الكتاب في علم تخطيط النقل الحضري. يتناول هذا الكتاب شرح وتفسير لمادة تخطيط النقل الحضري التي ينطلق منها طلبتنا في الدراسات الأولية والعليا في إختصاص الطرق والنقل (مواصلات).

إنطلاقا من مبدأ أهمية الكتاب التعليمي في العملية التعليمية وتوجيه الطلبة لفهم الأساسيات لمادة تخطيط النقل وأهم الطرق والتقنيات المستخدمة في عملية تنبؤ الطلب على النقل ومساعدتهم على الفهم والتمكن من المادة العلمية. يتضمن الكتاب عشرة فصول تشرح ماهية تخطيط النقل الحضري وطرق تنبؤ الطلب على النقل مع التطبيقات لكافة الناذج المستخدمة. تم تنظيم هذا الكتاب الى عشرة فصول كما يلى:

الفصل الأول: مقدمة.

الفصل الثاني: النقل والتوسع الحضري.

الفصل الثالث: خصائص النقل الحضري.

الفصل الرابع: عملية تخطيط النقل الحضري.

الفصل الخامس: نظام النقل- إستخدام الأراضي.

الفصل السادس: تنبؤ الطلب على النقل.

الفصل السابع: نمذجة توليد الرحلات.

الفصل الثامن: نمذجة توزيع الرحلات.

الفصل التاسع: نمذجة التقسيم لوسائط النقل.

الفصل العاشر: غذجة تعيين مسار الرحلة.

زينب أحمد القيسي أذار، ٢٠٢٤

المحتويات

رقم الصفحة	العنوان	الفقرة
	القصل الاول	
	مقدمة	
1	مقدمة	1.1
۲	القيم ،الاهداف ،الغايات	1.7
٥	تصنيف النقل	١٠٣
	الفصل الثاني	
	النقل والتوسع الحضري	
٧	النمو الحضري	1.7
١.	تاثير التحضر	7.7
١.	اهمية المناطق الحضرية	٣٠٢
11	البنية الهيكلية للمناطق الحضرية	٤٠٢
١٢	التصميم الحضري	0.7
١٣	النقل والنماذج الحضرية	7.7
١٦	استخدام مساحة الطريق	٧.٢
١٦	التصنيف الوظيفي للطرق الحضرية	۸۰۲
	الفصل الثالث	
	خصائص النقل الحضري	
١٨	العوامل التي تؤثر على احتياجات النقل	١٠٣
١٩	طلب النقل	۲.۳
١٩	انواع الرحلات	٣.٣
۲.	وسائط النقل	٤٠٣
77	نمو الطلب على النقل الحضري	0.7
7 7	زحام الطرق	٦٠٣
77	السعة، استخدام الفضاء واستهلاك الطاقة	٧٠٣
	للوسائط	
77"	تاثير النقل على البيئة	۸۰۳
۲ ٤	مكونات سياسة النقل الشاملة	9.4

	الفصل الرابع عملية تخطيط النقل الحضري	
۲٦	اهداف تخطيط النقل الحضري	١٠٤
7 7	التسلسل الهرمي لانظمة النقل الحضري	۲ . ٤
۲۸	التسلسل لتخطيط النقل الحضري	7. 5
۲۹	جمع البيانات	٤٠٤
٣٠	شبكات النقل	0, 5
٣١	- '	7.5
٣١	مسوحات تجميع البيانات	1.7.5
٣٢	مسح مقابلة الاسرة	7.7.2
<u> </u>	مسح الحجوم المرورية في منتصف الطريق	7.7.2
<u> </u>	مسوحات المقابلة على جانبي الطريق	
	مسوحات النطاق الشريطي	2.7.2
٣٤	دراسات السرعة-التدفق	0.7.8
٣٥	مسح مواقف المركبات	7.7.5
٣٦	مسح السابلة	٧٠٦٠٤
٣٦	مسح المركبات التجارية	٨٠٦٠٤
٣٦	مسح النقل العام	9.7.2
٣٦	حجم العينة	٧٠٤
٣٨	تحليل التاثير البيئي	٨٠٤
٣٨	تغطية تحليل التاثير البيئي	١٠٨٠٤
٣٩	اهداف تدابير او مقاييس التخفيف	۲ ۰ ۸ ۰ غ
٤٠	تلوث الهواء	٣٠٨٠٤
٤٢	التلوث الضوضائي	٤٠٨٠٤
	الفصل الخامس	
	نظام النقل استخدام الاراضي	
٤٤	مقدمة	1.0
٤٤	مكونات النظام الحضري	۲.٥
٤٦	مفاهيم وتعاريف	7.0
٤٩	معايير القياس ومقارنة الهيكل الحضري	٤.٥
٥٢	بعض النظريات والموضوعات المختارة	0.0
٥٢	الوصولية	1.0.0
٥٦	نظرية الموقع	7.0.0

٦١	تاثير النطاقات	7.0.0
٦٢	قيمة الاراضي	2.0.0
٦٣	استخدام الاراضي والنقل	٦.٥
٦٧	النمو والتدهور الحضري	٧.٥
79	٨٠٥ خصائص التنبؤ باستخدام الاراضي وخطة	
	استخدام الاراضي	
79	تصنيف نماذج استخدام الاراضي	1.4.0
٧.	نماذج تطوير استخدامات الاراضي	۲۰۸۰٥
٧.	نموذج الوصولية هانسن	7.1.0
٧٢	طريقة تدرج الكثافة المشبعة	٤٠٨٠٥
٧٨	نماذج استخدام الاراضي التشغيلية	٥٠٨٠٥
	القصل السادس	
	تنبؤ الطلب على النقل	
٨٠	ادوات تخطيط النقل	١٠٦
٨٠	الادوات التقليدية	4.4
٨٠	۳ ادوات التحليل المجهري	
۸١	الطلب على النقل وعملية التنبؤ	
٨٢	التنبؤ بالفعاليات الحضرية	٥٠٦
	الفصل السابع	
	نمذجة توليد الرحلات	
٨٤	توليد الرحلات	١٠٧
٨٥	العوامل المؤثرة على توليد الرحلات	۲.٧
٨٦	نماذج توليد الرحلات	٣.٧
٨٦	الانحدار الخطي المتعدد	1.7.7
9.	تقنية معدل تحليل الرحلة	7.7.7
٩,	تحليل الفئات	7.7.7
	الفصل الثامن	
	نمذجة توزيع الرحلات	
99	توزيع الرحلات	١٠٨
99	طريقة فراتر	۲۰۸
1 • £	طريقة نموذج الجاذبية	٣٠٨
١.٧	معايرة نموذج الجاذبية	٤٠٨

	الفصل التاسع	
	نمذجة التقسيم لوسانط النقل	
١١٦	تحليل تقسيم وسائط النقل	١٠٩
١١٦	تقسيم وسائط النقل مباشرة من توليد الرحلات	7.9
119	نماذج استخدام وسائط النقل للرحلات المتبادلة	٣.٩
	الفصل العاشر	
	نماذج تعيين مسار الرحلة	
175	تعيين مسار الرحلة	1.1.
170	طرق تعيين مسار الرحلة	7.1.
170	تقنية الحد الادني للمسار	1.7.1.
١٢٦	تقنية الحد الادني للمسار مع تقييد السعة	7.7.1.
185	التدفق على الشبكات	٣٠٢٠١٠
١٣٦	شبكات النقل مع دالة الطلب	٤٠٢٠١٠

الفصل الأول

مقدمة

١.١ مقدمة

إن النقل ضروري لتوفير التنقل للأشخاص وحركة البضائع ويسهل للأفراد فرص إكمال فعالياتهم اليومية على نطاق واسع مع أن النقل ليس غاية في حد ذاته وإنما الوسيلة لتحقيق غايات عدة. ينتج النقل الفعال والكفؤ مزايا عدة للمجتمع من الناحية الاقتصادية، الاجتماعية، والسياسية. لهذا يعد النقل مهم لتقدم الدول وترتبط الحكومات بالنقل من حيث إنشاء وتطوير أنظمة النقل وكمنظم لحركة النقل.

تشمل الفوائد الاقتصادية ما يلي:

- ١. التوسع في سوق العمل وزيادة الإنتاج كما" ونوعا".
 - ٢. استقرار أسعار السوق التجارية.
- ٣. استقرار اقتصادي نتيجة تركيز الأنشطة التجارية في المراكز ويتم توزيعها بصورة جيدة.

تشمل الفوائد الاجتماعية ما يلي:

- 1. فرص النقل من اجل النشاطات الثقافية والترفيهية.
 - ٢. إمكانية الوصول إلى المرافق الصحية.
 - ٣. اختيار الموقع للبيت والعمل.

تشمل الفوائد السياسية ما يلى:

- ١. تعزيز التكامل الوطنى والدولي.
- ٢. تطوير وتحسين جميع الخِدْمَات الحكومية للمجتمع.
 - ٣ نعزيز آمن البلاد.

يؤمن النقل النسيج الحضري الذي تعتمد عليه المدن في الوجود حيث يساهم في أفضل توزيع جغرافي للأفراد وأنشطتهم بواسطة تسهيل إمكانية التبادل المتوافقة مع الاحتياجات الفعلية وحماية التنمية المستقبلية. تولد رغبات الأفراد واحتياجاتهم من البضائع الطلب على النقل. يتنقل معظم الأفراد لغرض كسب العيش وإدارة

الأعمال العائلية والمشاركة في الأنشطة الثقافية والتر فيهية حيث بتطلب ذلك التنقل داخل المجتمعات وفيما بينهما. يتم توفير وسائط النقل المختلفة، مثل القطارات، الحافلات، المركبات، الدر اجات الهوائية، وغير ها من وسائط النقل المختلفة إلى جانب النقل بواسطة السير مشيا"على الأقدام. يعتمد اختيار وسيلة النقل على ما يفضله الأفراد من حيث الزمن والكلفة والراحة والملائمة. إن الهدف من إدارة النقل هو تلبية احتياجات الناس للنقل بأقصى در جات الآمان ضمن محددات الزمن والمكان والموارد المتاحة. من أجل تحقيق الاستخدام الأمثل للموارد المتاحة ولضمان أقصى إنتاجية، يجب التعامل مع إدارة النقل بصفة نظام ذي سَعَة تفاعلية. إن تخطيط أنظمة النقل بصورة مستقلة لا يعدى طريقة صحيحة لتحقيق نفس الأهداف كما هو معمول به حاليًا في عناصر التشغيل للنقل العام والخاص كأنظمة منفصلة. يجب تنسيقها بشكل صحيح كنظام متكامل مع الإدارة نحو الهدف المشترك. إن كل مدينة لديها احتياجات النقل المنفردة الخاصة بها. قد تحتاج المدينة المكتظة بالسكان إلى النقل السريع (Underground metro System) ونظام نقل الحافلات السريع (Bus Rapid transit) في حين إن مدينة أخرى منخفضة الكثافة السكانية قد تكون قادرة على إدارة النقل باستخدام نظام الحافلات الفعال. إن النقل المتوازن لأى مدينة يجب أن يتطور ليلائم محيطها المحلى.

(Values, Goals, Objectives) القيم ،الأهداف ،الغايات ٢.١

يجب أن يكون مخطط النقل متوافقا مع قيم المجتمع وأهدافه والموضوعية للنقل المحضري. في ضوء الصعوبات المتعلقة بدلالة الألفاظ والمرتبطة بالمفاهيم مثل القيم والأهداف والموضوعية والمعايير والمقاييس، يتم توضيح معانيها بإيجاز في هذا الفصل.

القيم (Values): هي صفات غير قابلة للاختزال وتشكل الرغبات الأساسية والدوافع التي تحكم السلوك البشري. تشمل الأمثلة على القيم المجتمعية:

أ. الرغبة في البقاء والحفاظ على التقاليد والثقافة.

ب. الحاجة إلى النظام والأمن والمساواة والحرية والعدالة.

يمكن ملاحظة أن القيم مجردة ولا يمكن قياسها، وأنه من الصعب شرح مرافق النقل من حيث هذه القيم.

الأهداف (Goals):

هي الحالات النهائية المثالية للبيئة الكلية التي يسعى إليها مخطط النقل في أثناء التخطيط للنظام الحضري. يمكن ذكر بعض الأمثلة للأهداف على النحو التالى:

أ. توفير فرص متساوية لجميع أفراد المجتمع للنقل، بغض النظر عن الدخل أو العمر أو الظروف الصحية، (يظهر هذا الهدف القيم المجتمعية مثل الإنصاف والعدالة الاجتماعية).

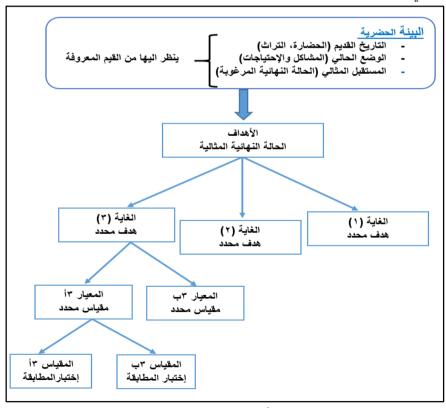
ب. تحسين البيئة الحضرية. (هذا الهدف ينسجم مع القيم المجتمعية للحفاظ على التراث الثقافي وضرورة الحفاظ على الانسجام بين الإنسان وبيئته). إن الأهداف أقل تجريدية من القيم، لكنها غير مذكورة بعبارات قابلة للقياس.

الغايات (Objectives): هي عبارات محددة تنشأ من هدف واحد أو أكثر ويمكن تحقيقها. يتم تحديد الغاية بطريقة يمكن أن تعبر عن درجة تحقيقها وإنجازها بواسطة استخدام المعايير. على سبيل المثال، الهدف هو تحسين البيئة الحضرية، فإن الغايات لهذا الهدف هي كالتالي:

أ. للتأكد من أن جميع السكان في المنطقة الحضرية يعانون من مستويات تلوث الهواء ضمن الحدود المقبولة.

ب. لتقليل الاضطراب الاجتماعي الناتج من إنشاء مرافق نقل جديدة.

المعايير (Criteria): هي مقاييس محددة أو اختبارات محددة تظهر درجة تحقيق أهداف معينة. يجب أن يرتبط معيار واحد في الأقل بكل هدف. يحدد المعيار مجموعة من القيم الذي يجب أن يتوافق أداء النظام ضمنها لتحقيق الأهداف. لتوضيح ذلك، مثلا المعايير الخاصة بغاية خفض مستويات تلوث الهواء كالتالي: أ. عدد الأيام في السنة التي يتم فيها تجاوز الحد المقبول.


ب. يتم تحديد الحد الأقصى السنوي لمعدل التركيز خلال مدة زمنية تبعا إلى الأنظمة الخاصة بجودة الهواء.

المقاييس (Standards): تبين طريقة القياس التي تحدد المطابقة للمعيار المعين. على سبيل المثال، في المعيار يجب أن يحصل في الأقل ٨٥ % من كبار السن وذوي الاحتياجات الخاصة على الخدمات الاجتماعية، فإن قيمة (٨٥ %) تعد بصفة مقياس.

في عملية تخطيط النقل، تعمل الأهداف بصفة دليل لتخطيط النظام (التخطيط الإستراتيجي طويل

الأمد) وتؤدي أيضا "إلى تطوير الغايات التي تشير إلى نوع المشروعات المطلوبة. ترتبط الغايات بتخطيط المشروع (تخطيط العمل على المدى القصير) ووضع المعايير لتقييم الخطط البديلة على مستوى المشروع.

إن العلاقات بين البيئة الحضرية والقيم والأهداف والغايات والمعايير والمقاييس موضحة في الشكل رقم (١-١) وإن الأهداف والغايات النموذجية موضحة في الجدول رقم (١-١). من المهم أن تكون الأهداف المختارة لتخطيط النقل واقعية فيما يتعلق باحتياجات السكان ومتوافقة مع الموارد الممكنة للمجتمع. لا يمكن تحقيق الأهداف إلا إذا كانت مصحوبة بسياسات إستراتيجيات داعمة. إن السياسات دليل وإرشادات على شكل أهداف تشغيلية مصممة لتحديد كيفية تحقيق الأهداف المعينة مسبقا. تتعلق الإستراتيجيات بترتيب السياسات والأهداف في التسلسل الزمني والمكانى حسب الأولوية.

الشكل (١-١): العلاقة بين القيم والأهداف والغايات والمعايير والمقاييس للبيئة الحضرية.

جدول (١-١): الأهداف والغايات النموذجية للنقل.

الغايات	الأهداف	رقم التسلسل
لله توفير وسائل نقل عام موثوقة وبأسعار معقولة، أمنة لجميع المواطنين ولا سيما	توفير أقصى حركة للأفراد	1
للفقراء منهم وكبار السن والأطفال. تحسين مستوى الخدمة للنقل الحضري.		
لله تحسين المرافق الخاصة بالسابلة وسائقي الدراجات الهوائية.		
 + تقلیل تلوث الهواء بسبب المرکبات. 	تحسين البيئة الحضرية	۲
الحركة المرورية. 4 تقليل الاضطراب الحاصل في المجتمع		
ومشاكل إعادة التأهيل بسبب المشروعات الجديدة.		
👃 تعزيز الصفات الجمالية للبيئة الحضرية.		
له زيادة قدرة المرافق الحالية لنقل الأفراد والبضائم.	تعزيز الكفاءة الاقتصادية للنقل	٣
 تقليل الكلفة الشخصية للنقل الحضري. تقليل كلفة أنظمة النقل العام. 		
👃 تقليل كلفة نقل البضائع.		
👢 زيادة التأثير الإيجابي للنقل الحضري.		
لعام التهلاك الكهرباء في وسائل النقل العام الحضري.	الحفاظ على موارد الطاقة	٤
المصطوي. 4 تقايل استهلاك الوقود للنقل الحضري.		
 	تحسين السلامة المرورية	٥
عن الحوادث المرورية.		
👃 تحسين السلامة الشخصية لمستخدمي الطرق.		

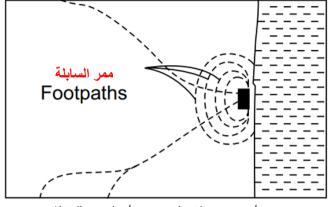
۳.۱ تصنیف النقل (Transportation Classification)

يمكن تصنيف النقل على نطاق واسع أيضا ويمكن التصنيف بصورة رئيسة حسب منطقة التشغيل مثل النقل الحضري والنقل الإقليمي. يركز النقل الحضري على تخطيط وتشغيل النقل مع التركيز على المتطلبات المكانية في منطقة حضرية. إن الرحلات هي في الأساس رحلات داخل المدينة وتكون رحلات قصيرة المسافة أما النقل الإقليمي يتعامل مع الرحلات طويلة المسافة. يمكن أيضا تصنيف وسائل النقل إلى ثلاث فئات وهي:

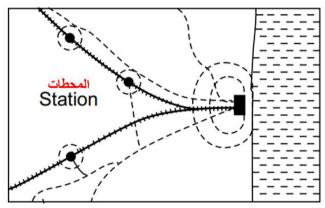
١. النقل الخاص (المركبات الخاصة)

- ٢. النقل العام (الحافلات والمركبات أكبر من ٢٤ راكبا)
 - أ. النقل العام (الحافلات الصغيرة أقل من ٢٤ راكبا)

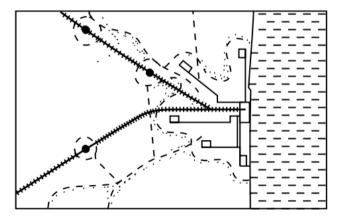
عندما تكون المركبات ملكية شخصية للركاب وتستخدم انقلهم بصورة خاصة يشار إلى النقل على أنه وسيلة نقل خاصة، على سبيل المثال السيارات والدراجات. تتضمن وسائل النقل العام استخدام المركبات الكبيرة العامة غير المملوكة للركاب، مثل الحافلات والقطارات (أكبر من ٢٢ راكبا). وهناك نوع آخر من النقل العام (استخدام المركبات الصغيرة مثل سيارات الأجرة والحافلات أقل من ٢٤ راكبا ونوع آخر مستخدم محليا يسمى (التوكتوك أو الستوتة) تسمية عراقية أو الركشة بالتسمية الهندية.

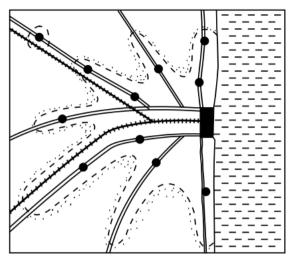

الفصل الثاني النقل والتوسع الحضري

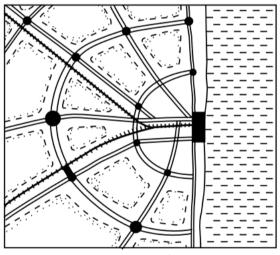
1.٢ النمو الحضري (Urban Growth)


بدأت المناطق الحضرية بصفة أماكن دائمة للسكن بالتنمية الزراعية وكان نموها وتطورها وتشكيلها اللاحق مرتبطا بتوافر وسائل النقل. قبل أن تصبح وسائل النقل الميكانيكية متوفرة، كان النقل البري صعبا وبطيئا. لذلك كانت المدن الأولى تقع بالقرب من الأنهار لتسهيل حركة البضائع عن طريق النقل المائي. مع تطور السكك الحديد والطرق السريعة والطائرات، حيث لم يعد النقل المائي شرطا" أساسيا لتطوير المدن الكبيرة.

يتأثر نمو المدن ليس فقط بالنقل ولكن أيضا "بعوامل اقتصادية واجتماعية وثقافية وجغرافية أخرى. مع مرور الوقت، أثرت وسائل النقل الداخلي على نمو المنطقة الحضرية. يظهر النمط النموذجي للنمو الحضري في الشكل رقم (٢-١) الذي يوضح الاستيطان في البداية موجها للسابلة مع وجود الشوارع في المرحلة البدائية، مع تحديد المنطقة الحضرية بالمسافة التي يمكن للفرد أن يمشيها في مدة زمنية معقولة. مع زيادة عدد السكان، تتوسع المنطقة الحضرية ويتم تطوير ممرات السكك الحديد القطرية أو الشعائية في مناطق الضواحي، جنبا إلى جنب مع عدد قليل من الشوارع. إن ممرات خطوط السكك الحديد تكونا جزاء من خطوط السكك الحديد بين المدن في البداية. أما خطوط (الترام) في الشوارع تعمل على تطوير وتوسيع الخدمة على طول ممرات معينة، وتشكيل المدينة إلى منطقة حضرية أفضل تنظيم وتطور مع تركيز الفعاليات والأنشطة في وسط المدينة. إن حركة السكك الحديد للركاب تنمو وتعزز الانتشار الخارجي للسكان وتحدث مزيد من التركيز السكان على طول ممرات السكك الحديد، والطرق الشريانية الجديدة النصف القطرية بين خطوط السكك الحديدة الشعاعية.


عندما تكبر مدينة لتصبح عاصمة، تتشكل شبكة شعائية ومحيطية مع بعض ممرات المرور التي تعتمد على السكك الحديد والبقية على الطرق لذا؛ فإن تعزيز الاتصالية والترابط يؤدي إلى تسريع التوسع والنمو في المدينة. إن تطور الصناعة والتنمية في البلاد تؤدي إلى زيادة نسبة عدد السكان الذي يعيشون في المناطق الحضرية حيث إن هناك علاقة قوية بين النمو الاقتصادي لبلد ما والتوسع الحضري لها.


أ. الاستيطان المخصص أو الموجه للسابلة.


ب. خطوط سكك الحديد للضواحي الموجهة لمركز المدينة.

ج. خطوط الترام الموجه لمركز المدينة.

د. الطرق الشريانية النصف قطرية الموجه للمدينة.

ه. الخطوط النصف قطرية أو الشعاعية والمحيطية الموجهة للعاصمة.

الشكل (٢-١): الأنماط النموذجية للنمو الحضري.

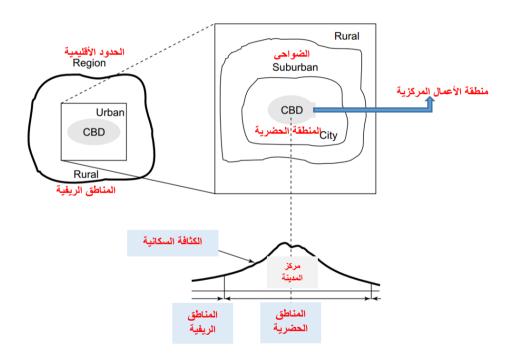
التحضر هو نتيجة التطور الاقتصادي المستمر المصحوب بالتركيز على تنمية الموارد البشرية والبنية التحتية الحضرية. إن النمو السريع للمدن قد يفوق موارد الحكومات لتلبية الطلب المتزايد على توفير البنية التحتية الأساسية. إن مجالات تطوير البني التحتية العامة يتضمن: تطوير الأرض، إستراتيجية النقل الحضرى،

الجودة البيئية، مساكن بأجور ملاءمة للمواطنين. تسبب أوجه القصور في تطوير البنية التحتية تكاليف اقتصادية كلية واجتماعية كبيرة. أحد الأسباب الرئيسية للزيادة في عدد السكان في المدن الحضرية هي الهجرة من الريف إلى المدينة بحثا عن فرص عمل أفضل. تجذب المدن الكبيرة أيضا هجرة السكان من المدن الأصغر. يستقر المهاجرون في الأراضي المفتوحة المتاحة بالقرب من مواقع عملهم، مع أن الظروف المعشية غير المرضية في كثير من الأحيان.

يجب على الحكومة بذل جهود كبيرة لتوزيع الصناعات في جميع أنحاء البلاد وخلق فرص عمل في العديد من المدن المتوسطة الحجم. شكل الفقراء نسبة كبيرة من سكان المدينة الحضرية في الدول النامية وإن دخل الأسر أقل من مستوى الفقر المناسب للبلد المعنى. بسبب محددات الموارد، تجد الدول صعوبة في توفير المرافق الملاءمة مثل الإسكان والطرق وإمدادات المياه والصرف الصحى والنقل.

(Impacts of Urbanization) تأثير التحضر ۲.۲

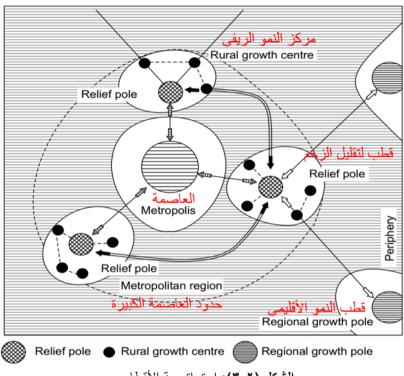
يسبب التحضر التأثيرات التالية:


- ١. يصبح النقص في المساكن أكثر.
- ٢. زيادة الزحف أو التمدد العمراني.
- ترداد معدل طول الرحلة وإجمالي عدد الركاب لكل كيلومتر من الرحلات نتيجة الزحف العمراني.
 - ٤. ارتفاع أجر المعيشة للسكان.
 - ٥. زيادة عدد الرحلات في المناطق الحضرية.
 - الزحام المروري للطرق مما يسبب زيادة في تلوث الهواء.
- لا تف مرافق البنة التحتية مثل إمدادات المياه والصرف الصحي والمدارس
 والملاعب والمستشفيات بالمتطلبات.
 - ٨. زيادة عدد المركبات المسجلة وحوادث المرور.
 - . از دحام حافلات النقل العام خلال مدة الذروة.
- 1. يصعب أحيانا استيعاب أنواع جديدة من النقل مثل النقل السريع بالسكك الحديدية بسبب الكثافة العالية للتراكم ومحددات المساحة.

في أي مجتمع نام، لا تنتهي عملية التحضر ويصاحبها العديد من الآثار السلبية. من خلال الإدارة المستنيرة للمراكز الحضرية ويمكن توجيه عملية التحضر لتحقيق الازدهار والنمو الشامل.

(Importance of Urban Areas) همية المناطق الحضرية ٣.٢

تعمل المدن بصفة مركز للتجارة والاختراع والإبداع وأصبحت محركات التنمية الاقتصادية. تعمل المراكز الحضرية كمحفزات للنمو، حيث توفر سبلا للتوظيف وتحسين مستويات المعيشة. يأتي الجزء الأكبر من إجمالي المنتج المحلي للبلاد من المناطق الحضرية بنسبة (٦٠ %). كما تتركز مراكز التعلم والثقافة، ومقر الإدارة، والمؤسسات المالية في المناطق الحضرية. من المهم تكريس اهتمام خاص لتنمية المناطق الحضرية حيث يساعد نظام النقل الحضري الفعال على زيادة الكفاءة الاقتصادية للمدينة إلى أقصى حد في حين يؤخر النظام المتدني التقدم الاقتصادي.


7.3 البنية الهيكلية للمناطق الحضرية (Structure of Urban Areas) يمكن عرض البنية الهيكلية للمنطقة الحضرية في محيط إقليمي بشكل تخطيطي كما موضح في الشكل رقم (٢-٢). إن الكثافة السكانية القصوى بالقرب من مركز منطقة الأعمال المركزية (CBD) وتنخفض مع زيادة بعد المسافة عن منطقة الأعمال المركزية (CBD).

الشكل (٢-٢): رسم تخطيطي للبنية الحضرية ضمن الحدود الإقليمية.

يمكن تقليل ضغط السكان في مدينة حضرية (العاصمة الكبيرة) إذا تم تطوير عدد قليل من العقد الحضرية خارج المدينة ولكن ضمن حدود العاصمة الكبيرة كما

موضح في الشكل رقم (٢-٣). يشار إلى هذه العقد الحضرية باسم الأقطاب لتقليل الزخم وتعرف الإستراتيجية باسم إستراتيجية الأقطاب (١٣).

الشكل (٢-٣): إستراتيجية الأقطاب.

Vrban Design) التصميم الحضري. ٢.٥

يمكن تصور النظام الحضري على أنه مكون من (خمسة) أجزاء:

- ١. الأجسام المتحركة: الناس، البضائع، المركبات، الخدمات.
- ٢. الفعاليات: الإقامة، الوظائف، إنتاج السلع والبضائع، الخدمات، الحركة.
 - ٣. البنى التحتية: الأبنية، الطرق، سكك الحديد، محطات توليد الطاقة.
 - ٤. الأرض: استعمالات الأرض المختلفة.
 - السياسة: الأهداف، القرار، الخطط.

التصميم الحضري هو وسيلة لتفسير وتحسين تصور الناس للشكل النهائي للمدينة. إن الجوانب المهمة للتصميم هي كالتالي:

أ. شكل المدينة (City Form): التنظيم التصميمي للمدينة الذي يعكس نمط التطورات والممرات والمسارات المستخدمة لأنظمة النقل.

ب. هندسة النقل: المظهر التصميمي وخصائص الفضاءات المفتوحة والمغلقة، التي تشمل مر افق النقل.

ت. العوامل البشرية: التصميم لتوفير الراحة للسابلة والركاب، والتواصل الاجتماعي، وتحفيز الحواس بالضوء والصوت والرؤية والطقس.

يجب إيلاء هندسة النقل الاهتمام لضمان التنظيم الفضائي والتواصل القديم/ الجديد والأسطح للشوارع تحتاج الحد الأدنى من الصيانة. يجب دمج الأبنية المختلفة والطرق والجسور وطرق السابلة والفضاءات المفتوحة والحدائق والأشجار بشكل فعال لتشكيل تصاميم شاملة وجمالية. تساهم مراكز السابلة الحديثة في مناطق التسوق في المدن الجديدة وتعزيز جماليات مراكز المدن.

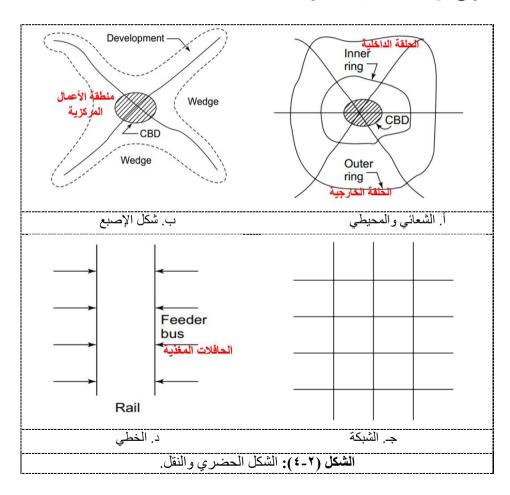
الجانب الآخر المهم الذي يجب مراعاته هو جودة البيئة الشخصية في النقل الذي تشمل الصورة، المناخ المحلي، والبعد الاجتماعي، والهندسة البشرية، والمعلوماتية/ الاتصالات. يتميز المناخ المحلي المثالي بهواء نظيف، وانخفاض مستوى الضجيج والاهتزاز (نتيجة القطارات ووسائط النقل الأخرى)، ودرجة حرارة معتدلة، وإضاءة جيدة. يجب أن تكون معلومات النقل مقروءة وسهلة الفهم. إن البلد إلى به العديد من اللغات وانخفاض مستوى الإلمام بالقراءة والكتابة، يمكن توصيل الاتجاهات والتوجيه في شكل رسوم توضيحية وعلامات مفهومة إلى أقصى حد ممكن. يجب أن تكون الأحرف ذات حجم مناسب لتمكين القراءة عن بعد ولكي تكون فعالة، يجب أن يكون التخطيط مصحوبا بالتخطيط الاجتماعي. إن التحدي الذي نواجهه هو ابتكار طرق للترويج لمرافق الحياة في خضم التنمية الحضرية لجعل الحباة أكثر إرضاء بدلا من الاحباط.

Transportation and Urban Forms) النقل والنماذج الحضرية

تتمثل وظيفة النقل الحضري في توفير الربط بين مناطق الإقامة للمواطنين والعمل، إلى جانب تسهيل الأنشطة الصناعية والتجارية واسعة النطاق الذي تؤدي إلى تطوير ونمو المنطقة الحضرية. يؤثر النقل على الشكل الحضري والنمو الجغرافي للمناطق الحضرية. إن العدد من المدن في البلاد النامية تمر بمراحل حرجة من تطورها حيث يؤدي النمو غير المسيطر بسبب التوسع الحضري المتزايد دون الاستفادة من التوسع المخطط للإسكان والنقل والبنية التحتية إلى تدهور نوعية الحياة في العديد من المناطق الحضرية. إن الحافلات والقطارات المزدحمة، والشوارع المقتضة بالمركبات وحركة السابلة على الطريق كلها المشهد المشترك للزحام المروري اليومى.

إن النقل عنصر رئيس في تصميم البيئة الحضرية الكلية. حيث يقدم التصميم المناسب والأمثل الراحة والمتعة للمستخدمين بدلا من التدهور، لأن أنماط النقل الجديدة مثيرة ومبهجة بصريا "ولا تسبب التلوث البيئي وتربط المناطق بأماكن العمل والأسواق التجارية ومراكز الترفيه في البيئة الحضرية المخطط لها. مع ذلك،

إن الأنماط الجديدة تحتاج إلى استثمار الموارد والجهود، على مدى إطار زمني مناسب لحجم التنمية المتوخاة. يجب أن يكون الاستثمار في النقل الحضري مخططا بحيث يكون فعالا" من حيث التكلفة ويجب أن يؤسس نظام نقل فعال تشغيلي "يتو افق مع مزيج متعدد الوسائط المناسب. تتزايد أهمية النقل الحضري بالنسبة للاقتصاد والرفاهية الاجتماعية ولتعزيز فعالية الحركة في المدن الكبري، من الضروري توفير وسائل النقل العام بدلا" من النقل الخاص.


تؤثر ممرات النقل على تكوين الشكل الحضري كما موضح في الشكل رقم (٢-٤). غالبا ما تكون قرارات النقل لا رجعة فيها، وستؤثر القرارات المتخذة في الوقت الحاضر على الشكل المستقبلي للمدينة. يجب تأطير قرارات السياسة بشأن استخدام مراكز النقل العام والتنمية المشتركة للمناطق الحضرية والنقل ودراسة البدائل بعناية من قبل فريق متعدد التخصصات بصفة جزء من التصميم الحضري. يتكون الفريق من مجموعة خبراء في الاقتصاد، الاجتماع، العلوم، الإدارة العامة، ومنظمات القطاع الخاص، والتصميم الحضرى، إلى جانب النقل. تضع كل مهنة مجال خبرتها الخاصة وتتفاعل مع المجالات الأخرى بواسطة مناقشات التأثيرات بحيث ينتج عن توليف جميع العوامل اقتراح تنمية موحدة متماسكة. عندما يتم التخطيط لمرافق النقل الرئيسية، يجب على المخطط أن يأخذ في الاعتبار العوامل الاجتماعية والاقتصادية والسياسية والبشرية والجمالية تكنولوجية المختلفة التي تتم مواجهتها. لتحسين الجودة المادية التي تصاحب التغيير بشكل كبير، يجب أن تهدف السياسات العامة للنقل الحضري إلى حرية اختيار وسيلة النقل للمواطنين والعدالة الاجتماعية والحفاظ على البيئة عند مستوى مقبول. يتم تحديد أنماط النقل وتصميم الممرات في المناطق الحضرية بواسطة توزيع كثافة الأنشطة والفعاليات الحضرية. وهذا بدوره يحدد الجدوى الاقتصادية لأنماط النقل المختلفة لحركات محددة من نقطة إلى أخرى. يتضمن اختيار البدائل لمنطقة حضرية بين مختلف الترتيبات الممكنة للتنمية التجارية والصناعية والسكنية إلى جانب وسائل النقل المترابطة والمناسبة كما هو موضح في الشكل (٢-٤)، قد يشمل نمط ممرات النقل ما يلي:

أ. الشعائي والمحيطي

ب. شكل الإصبع

ت. شبكي ث. خطي

يعد النمط الشعائي والمحيطي أكثر ملاءمة لتشغيل النقل العام (الحافلات) حيث يمكن أن يكون التوجيه مرنا ". تعمل المسارات المحيطية كمغذ للشوارع الشريانية الرئيسة. أما نوع الإصبع يشير إلى تشكيل ممرات مرورية رئيسة (ربما سكة حديد، نظام النقل السريع) شعائيا " من منطقة الأعمال المركزية، والتطور الكثيف على طول هذه الممر ات. تمتلئ المساحات بين الممر ات الشعائية تدريجيا. أما نظام الشبكي يستخدم للحفلات، ويتم تطويره في المدن المخططة في البلاد المتقدمة. يتغير الشكل الحضري مع التطور ومع تطور ممرات المرور الجديدة. يجب على المخططين ضمان سهولة الوصول إلى وسائل النقل. تشغل مرافق النقل نسبة كبيرة من المناطق الحضرية، وتشغل الطرق ومحطات تعبئة الوقود ومحطات السكك الحديد والمطارات ما يقارب ثلث الأراضي، مما يؤدي إلى تناقض شديد الخطر في المساحات الخضراء والأراضي غير المستخدمة. تعد الطبيعة والشخصية وأسلوب الحياة المرغوب فيها للعصر من المحددات الرئيسية فيما يتعلق بالتنمية الحضرية، التي تعتمد عليها سياسات تطوير الأراضي والنقل المتوافقة التي سيتم تنفيذها. قد تتجنب المدن النامية مشكلات النقل الرئيسية في المستقبل إذا تم النظر في العلاقة بين الحجم والشكل الحضري وأنظمة النقل المتوافقة في المراحل الأولى من خطط التنمية الحضرية.

V.Y إستخدام مساحة الطريق (Use of Road Space)

سيتطلب التخطيط التشغيلي للنقل في المناطق الحضرية النظر في تخطيط استخدام مساحة الطريق. إن الأنشطة التي تقارن لمساحة الطريق كثيرة وتختلف أيضا مع الزمن. إن بعض مستخدمي مساحة الطريق هي:

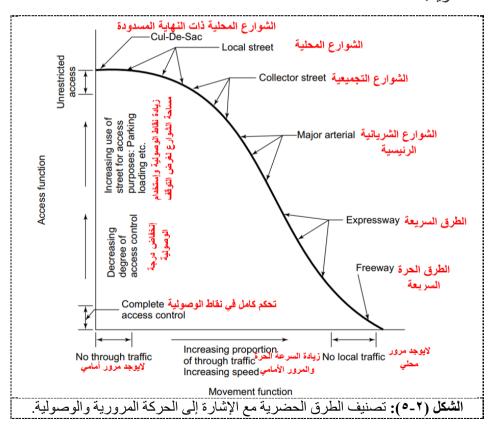
- ١. وقوف المركبات.
- ٢. استخدام السابلة للطريق.
- ٣. مرور المركبات على طول الطريق.
 - ٤. الوصول إلى نهاية الرحلة.
 - a. نقل البضائع على طول الطريق.
 - ٦. جمع وتوصيل طلبيات البضائع.
 - الأسواق الصغيرة.
 - ٨. الأعمال الفنية والأبنية.
- ٩. أنابيب الغاز، أسلاك الكهرباء، وأنابيب المياه الصحية.

كل هذه الأنشطة لها مكانها في الحياة اليومية ومن الضروري لنا تحديد الأولويات بينهما. سيكون لمعظم الطرق استخدام أكثر من استخدام واحد مع أن إن الوظائف مخصصة في الغالب للحركة والوصول. يجب أن تأخذ خطة النقل في الاعتبار هذه الحقيقة وتعديل الأولويات والتحكم في بعضها وتكون خطة النقل مرنة للاستجابة لهذه الأولويات والتقنيات المتغيرة.

Functional Classification of التصنيف الوظيفي للطرق الحضرية ٨.٢ (Urban Roads)

تلبى الطرق الحضرية الوظائف التالية:

أ. " وظيفة الحركة: تسهيل الحركة السلسة للمركبات والدراجات الهوائية والسابلة


.

- ب. وظيفية الوصولية: توفير الوصول إلى الأراضي والأبنية والمرافق على جانبي الطريق.
- ت. الوظيفة المكانية: استيعاب المرافق العامة مثل الكهرباء وإمدادات المياه وتصريف المياه ونظام النقل السريع تحت الأرض، إلخ.

يعتمد تصميم الطريق الحضري بشكل كبير على الأهمية النسبية المعطاة لوظائفه المختلفة، ما سيما وظائف الوصول والتنقل. يجب تصميم الشارع المحلي والأخذ بنظر الاعتبار نقاط الوصولية والتقاطعات المتكررة، في حين الطرق الحرة السريعة تعتمد على السرعة الحرة العالية ونقاط الوصولية المحددة جدا والمحكمة. إن خصائص حركة المرور التي يجب مراعاتها هي متوسط طول الرحلة، متوسط

سرعة النقل، التحكم، نقاط الوصولية، التباعد بين الشوارع من نفس التصنيف، الحجم المروري، ونوع أنظمة التحكم المرورية.

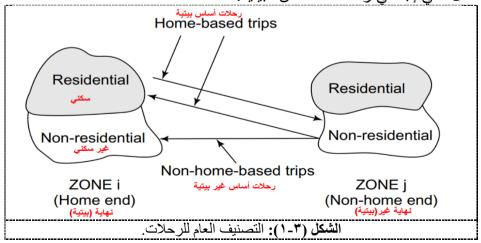
استنادا إلى الخصائص الهندسية والمرورية، يمكن تصنيف الطرق الحضرية على أنها طرق حرة سريعة أو طرق سريعة أو شريانية أو شوارع تجميعية أو شوارع محلية أو طريق ذو نهاية مسدودة قصيرة يتيح الوصولية إلى الوحدات السكنية. يفصل الشارع المحلي الوحدات السكنية المفردة ويدمج مجموعة من الوحدات السكنية. أما بالنسبة للشارع الجامع يفصل مجاميع الوحدات السكنية ويدمج الحي أو المحلة. في حين تفصل الشوارع الشريانية الأحياء السكنية وتتكامل مع المجتمع. إن الطريق الحر السريع الطريق المحتمعات. يوضح الشكل (٢-٥) تصنيف الأنواع المختلفة للطرق الحضرية مع الإشارة إلى وظيفة الحركة والوصولية. يجب تنظيم الطرق الحضرية في نظام شبكات طرق فعالة تتكون من أنواع مختلفة من الطرق وتتضمن التدابير لتنسيق المرور والبيئة في المناطق الحضرية.

الفصل الثالث خصائص النقل الحضري

(Factors Influencing النقل التي تؤثر على احتياجات النقل Transportation Needs)

تتأثر احتياجات النقل لمنطقة حضرية بمجموعة مختلفة من العوامل بما في ذلك إجمالي السكان وتوزيع السكان والجغرافية ومستويات الدخل وسياسة الحكومة بشأن التنمية الحضرية.

- أ. مجموع السكان: كلما زاد مجموع سكان المنطقة، زاد اتساع نطاق نظام النقل اللازم لخدمة العدد الكبير من الرحلات داخل المدينة التي يقوم بها السكان. على سبيل المثال، تعتمد المراكز الحضرية الكبرى في العالم اعتمادا كبيرا على النقل الجماعي والنقل بالسكك الحديدية عموما. من ناحية أخرى، تعتمد المدن الصغيرة على نظام شبكة الشوارع ووسائل النقل الخاصة. في النطاق المتوسط من حيث عدد السكان، يمكن أن يكون هناك استعداد فعال للنقل العام (الحافلات) في نظام شوارع جيد التخطيط يخدم أيضا النقل الخاص.
- ب. التوزيع السكاني: عندما تكون كثافة السكان منخفضة، يكون النقل الخاص اقتصاديا وموفرا للطاقة. مع ذلك في مستويات الكثافة العالية، يكون القطاع الخاص اقتصاديا ومجديا من الناحية المالية.
- ت. الجغرافية: الأنهار والتلال في المنطقة الحضرية تخلق قيودا على نظام النقل. قد تكون هناك حاجة للجسور والأنفاق. يمكن زيادة السعات الاستيعابية من خلال الاستفادة القصوى من المرافق القائمة.
- ث. مستوى الدخل: زيادة مستوى الدخل للفرد يؤدي إلى انتشار وسائل النقل الخاص وتقليل استخدام وسائل النقل العام.
- ج. سياسة الحكومة: تؤدي السياسة الحكومية التي تشجع ملكية الوحدات السكنية وملكية المركبة إلى أنماط نقل عام منخفضة الكثافة والاعتماد على وسائل النقل الخاصة. سيكون التشجيع على الأنماط السكنية عالية الكثافة إلى التشغيل الفعال لوسائل النقل العام.


۲۰۳ طلب النقل (Transportation Demand)

يتم تركيز الطلب على النقل في أوقات محددة مرتبطة بنمط النشاط والفعاليات في المجتمع. الطلب يكون زماني ومكاني. في بعض الحالات، على سبيل المثال رحلات العمل والمدرسة، إن الطلب له قدر معين من الانتظام الذي يسمح بإجراء حسابات تفصيلية. في حالات أخرى، على سبيل المثال، الرحلات الاجتماعية والترفيهية، هناك قدر كبير من عدم اليقين، وفي هذه الحالات ستكون موثوقيه التوقعات للطلب ضعيفة

(Types of Trips) أنواع الرحلات (Types of Trips

إن الرحلة هي الحركة من بداية إلى نهاية الرحلة (وجهة الرحلة) والمسافة بين البداية والنهاية تسمى طول الرحلة. يعرف الزمن المستغرق للانتقال من الأصل إلى الوجهة بزمن الرحلة للنقل. يعرف الإنفاق من حيث المال لأداء الرحلة بتكلفة النقل ويمثل بداية و نهاية (وجهة الرحلة) طرفى نهايات الرحلة.

يمكن تصنيف الرحلات على نطاق واسع على أنها رحلات أساس بيتية (منزلية) وغير بيتية (غير منزلية) كما موضح في الشكل رقم (١-٢). تسمى الرحلة التي تكونا احدى نهاياتها في البيت برحلات أساس بيتية (منزلية) وإذا كانت الرحلة لا تنتهي في نهاياتها في البيت مثلا رحلات من العمل إلى التسوق تسمى رحلات أساس غير بيتية (غير منزلية). تمثل رحلات أساس البيتية (المنزلية) في معظم المناطق الحضرية ٨٥ % من إجمالي الرحلات. يمكن تصنيف الرحلة اعتمادا على غرض الرحلة وأيضا يمكن تصنيفها على أنها رحلات عمل أو رحلات مدرسية أو رحلات تسوق ورحلات ترفيهية واجتماعية. إن رحلات العمل تجرى في أوقات منتظمة في كل يوم عمل وتسمى رحلات عامة يومية في حين الرحلات الترفيهية والاجتماعية والتسوق لا تجرى في أوقات منتظمة، وعادة الرحلات العامة اليومية تمثل ثلثي إجمالي رحلات الأساس البيتية.

(Modes of Travel) وسائط النقل

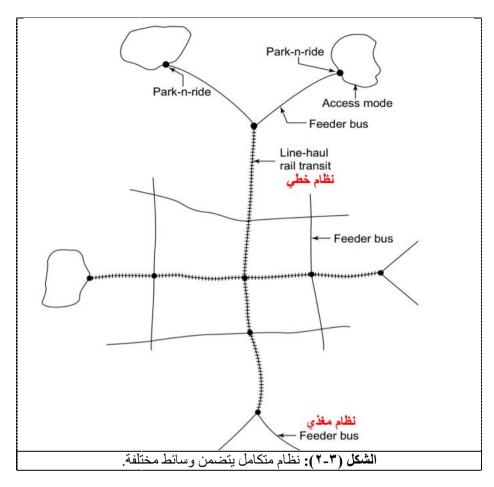
تشكل حركات الرحلات من البيت في المناطق الحضرية الجزء الذي هو أكبر من إجمالي الرحلات. سيستمر جزء كبير من رحلات المشي للسابلة. يجب أن يحظى تخطيط وتصميم حركات السابلة باهتمام كبير مماثل لنقل الأشخاص الآلي. يتم استخدام وسائط النقل المختلفة بواسطة التفاعل المعقد بين عوامل مثل حجم المدينة وجغر افيتها وشكلها وخصائصها الديمو غر افية والاقتصادية التكنولوجية المتاحة. يمكن تصنيف وسائط النقل على نطاق واسع إلى ثلاث فئات مثل النقل الخاص، النقل العام والنقل المتوسط. تشمل وسائل النقل الخاصة المشي والدر اجات الهوائية والمركبة ذات الأربع عجلات. تكون المركبات أما ملكية خاصة ويتم تشغيلها من قبل المستخدم لأغراض خاصة على طريق عام.

تشكل الحافلات والترام وقطارات السكك الحديد وسائط النقل العام. يعرف النقل العام أيضا باسم النقل العام أو النقل الجماعي. أن الخدمة متاحة للاستخدام لجميع الأشخاص الذين يدفعون الأجرة المحددة. تشمل وسائط النقل العام المتوسطة (المعروفة أيضا باسم Paratransit) المركبات المستأجرة مثل مركبات الأجرة، والعربات الصغيرة الآلية (التوكتوك أو الستوتة) تسمية عراقية.

يتم التعامل مع وسائط النقل المتوسطة في بعض تقارير تخطيط النقل كجزء من النقل الأساسية هذه في النقل الخاص. من غير المحتمل أن يتم استبدال وسائط النقل الأساسية هذه في المستقبل القريب، لكن قد يتم تعديل النسبة حسب الخصائص الاقتصادية والديمو غرافية للمنطقة.

يشير مصطلح transit إلى النقل العام في المناطق الحضرية مع التركيز على السعة وتكرار الخدمة. أما مصطلح mass transit يشير إلى النقل العام أيضا مع التركيز على السعة العالية والكفاءة العالية في استخدام الطاقة، أي خدمات الحافلات والسكك الحديدية في الضواحي وبين المدن. والنقل السريع العالية مثلا النقل mass transit هو نقل عام transit مع التركيز على السرعة العالية مثلا النقل السريع بالسكك الحديدية Rapid Rail Transit RRT. يمكن تصنيف النقل العام إلى:

- حافلات النقل العام Bus Transit
- النقل العام بالسكك الحديدية Rail-based transit


ويشمل النوع الأخير النقل السريع بالسكك الحديدية والسكك الحديدية الخفيفة والسكك الحديدية في الضواحي والسكك الحديدية الأحادية والترام.

يوضح الشكل رقم (٣-٢) نظام متكامل لأنواع مختلفة من وسائط النقل. قد يتكون نظام النقل الشامل الكلي من نظام نقل دائري ونظام نقل مغذ ونظام نقل خطي. ينقل النظام الدائري الأشخاص داخل منطقة الأعمال المركزية التجارية أو مركز نشاط فعاليات رئيسي.

أما نظام النقل الخطي يستخدم لنقل الرحلة السريعة الطويلة من نقطة التجميع إلى نقطة التوزيع في كلا الاتجاهين وعادة يكون في شكل نقل سريع بالسكك الحديدية مع حق المرور الحصري. أما نظام النقل المغذي ينقل الركاب بين مكان الإقامة/ مكان العمل/ مكان الوقوف والركوب وأقرب محطة لنظام النقل الخطي. يمكن توفير مرافق الوقوف والركوب في مواقع مناسبة إما عند محطات العبور أو في مواقع أخرى حيث يساعد تغذية حافلة النقل والاتصال بمحطة الوقوف. إن الهدف من النقل التجميعي الحضري هو توفير خدمات النقل السريع للركاب بطريقة أمنه واقتصادية وموثوقة ومريحة. تشمل الأهداف الخاصة للمجتمع هو تقليل تلوث الهواء والتلوث الضوضائي واستخدام أفضل للفضاءات. إن أهداف وكالات النقل هي تلبية الطلب بأقل تكلفة والاستخدام الأمثل للبنية التحتية ورضى المستخدم. يعتمد اختيار الركاب لوسائط النقل وصنف الخدمة على بعض العوامل الخمسة التالية:

- ١. كلفة النقل
- ٢. وثوقية الخدمة
 - ٣. زمن الرحلة
- ٤. سهولة الوصول
 - د. راحة النقل

بالنسبة للفئة من الركاب ذوي الدخل المحدود يصبح عامل كلفتة النقل مهما والأكثر أهمية. تنفق الأسر في البلاد النامية حوالي ١٠٠٨ % من الدخل على وسائل النقل. قد يتجنب الأشخاص الحافلات التي تسلك طريقا طويلا ويختارون طريقا ذا زمن رحلة قصير. قد تؤثر سهولة الوصول من البيت إلى محطة الحافلات أو محطة السكك الحديد على اختيار وسيلة النقل. في البلاد النامية يكون للراكب خيارات محدودة ويصبح أسير لاختيار محدد.

Growth of Urban Transport على النقل الحضري الفقل الحضري Demand)

يعتبر الطلب على النقل في المناطق الحضرية ديناميكيا وله أبعاد عدة مثل الحجم والخصائص الفيزيائية والتكنولوجية والإدارة. تساهم الزيادة في عدد السكان بشكل مباشر في زيادة عدد الرحلات. يزداد معدل طول الرحلة مع مرور الوقت حيث يؤدي عدد السكان والأنشطة إلى توسع حجم المدينة.

(Road Congestion) زحام الطرق

الزحام على الطريق هو أكثر مظاهر مشكلة النقل الحضري شيوعا. يؤدي الزحام المروري إلى زيادة التكاليف التشغليلية للمركبة ويتطلب استهلاكا أعلى للوقود، كما يؤدي أيضا" إلى تلوث البيئة. إن زحام الطرق يضر الاقتصاد لأنه يفرض تكاليف عالية على الصناعة والمستخدمين الأخرين. تم إيجاد العديد من الحلول لمحاولة تقليل الزحام المروري مثل القيود المفروضة على وقوف المركبات في الشارع،

التشغيل في اتجاه واحد، حظر حركات الانعطاف، مراقبة حركة المرور ذات الأولوية، توفير معابر السابلة المنفصلة عن الطريق. سيكون النهج الأكثر فعالية هو تشجيع النقل العام لزيادة الكفاءة والاستفادة من مساحة الطريق، إلى جانب خدمة نقل السكك الحديد داخل المدن والضواحي في جميع المدن الكبرى.

(Capacity, Space السعة، إستخدام الفضاء وأستهلاك الطاقة للوسائط ۷۰۳ Utilization and Energy Consumption of Modes)

يمكن تحديد كفاءة وسائل النقل بواسطة متطلبات مساحة الوحدة الخاصة للحركة (متر مربع لكل راكب) ووحدة الاستهلاك للطاقة معبرا عنها (بالكيلووات ساعة/ راكب- كم). تعتمد السعة القصوى لوسائل النقل على سعة المركبة وأقصى تدفقا للمركبة لكل ممر في الساعة. إن السعة العملية أقل بكثير حوالي نصف السعة القصوى. يتم حساب استهلاك الطاقة لأي وسيلة نقل حضري لكل راكب من إجمالي القيمة النسبية للطاقة حسب تصنيع المركبة وتشغيل المركبة مقسوما على إشغال المركبة. يوضح الجدول رقم (٣-١) القيم النموذجية للمعاملات أعلاه. من الملاحظ إن وسائل النقل الخاص تستهلك عدة أضعاف المساحة والطاقة التي تتطلبها وسائط النقل العام.

الجدول (٣-١): خصائص الوسائط النموذجية.

Vehicle	Space Required for	Estimated Total Energy
(نوع المركبة)	Movement per	Consumption Per Passenger-
	Passenger m ²	km kwh
	(المساحة للحركة المطلوبة	وحدة إستهلاك الطاقة المحسوبة لكل
	بوحدات المساحة لكل راكب)	راکب۔کیلو واط
Car	40.0	1.12
Two-wheeler	17.5	0.29
Bus	4.5	0.12
Rail	2.5	0.09
Bicycle	8.5	0.06
Walk	0.7	0.04

٨٠٣ تأثير النقل على البيئة (Impact of Transport on Environment) يشمل تأثير النقل على البيئة ما يلي:

- أ. تلوث الهواء.
- ب. التلوث السمعي (الضوضاء).
 - ت. التأثير على المجتمعات.
- ث. الحوادث والأضرار التي تصيب صحة الإنسان.

يتسبب النقل تلوث الهواء بسبب الانبعاثات المختلفة من المركبات كما موضح في المحدول رقم (٢-٢). يتسبب أول أوكسيد الكاربون ((CO) في إحداث ظاهرة الاحتباس الحراري، حتى الجرعات المنخفضة تضعف الرؤية وتسبب الصداع. يؤدي استنشاق جرعات عالية من أوكسيد النتروجين (NOx) إلى تهيج الجهاز التنفسي ويسبب الأمطار الحمضية وإلحاق الضرر بالنباتات. يسبب ثاني أوكسيد الكبريت (SO2) مشكلات في الجهاز التنفسي. تسبب الجسيمات مشكلات في الجهاز التنفسي وتضر بالأبنية. إن زيادة ثاني أوكسيد الكاربون في الغلاف الجوي يؤدي إلى زيادة الاحتباس الحراري.

الجدول (٣-٢): الانبعاثات النموذجية من المركبات.

Vehicle	Emission, kg per 1000 vehicle-km	
	Total emission	Carbon Monoxide
Bus	38.1	12.7
Truck	38.1	12.7
Car(Petrol)	49.6	40.0
Car(Diesel)	3.2	1.1
Three-wheeler	35.8	25.5
Two-wheeler	27.3	17.0

إن ضوضاء النقل شديد الخطر تزعج النوم وتؤثر على أداء الأطفال في المدارس وتقلل من جودة الحياة. أيضا ساهم انخفاض المشي واستخدام المركبات في زيادة الإصابة بأمراض القلب والسمنة ومرض السكري كذلك زيادة الحوادث المرتبطة بالمرور في المناطق الحضرية التي تؤدي إلى مخاطر صحية ومعاناة بشرية. يمكن الحد من الأثار الضارة النقل على البيئة إذا زاد استخدام النقل العام وانخفاض استخدام وسائل النقل الخاصة. يتم عرض قيم الانبعاثات النموذجية للمركبات المختلفة في الجدول رقم (٣-٢). من الواضح إن انبعاث أول أوكسيد الكاربون من مركبات البنزين أعلى منه من حافلات الديزل. كما أن مستوى الضوضاء عند ١٥ مترا "من المصدر حوالي ٩٠ ديسيبل للحافلة وحوالي ٧٠ ديسيبل للمركبة. يمكن تقليل مستوى الضوضاء المحيطة إذا استخدم المزيد من الأشخاص الحافلة بدلا" من استخدام المركبات الخاصة.

(Components of Comprehensive مكونات سياسة النقل الشاملة Transport Policy)

هناك خمسة مكونات رئيسية تشكل جزءا من سياسة النقل الشاملة في المناطق الحضرية كما موضح في الجدول رقم (٣-٣). تظهر دراسة تطوير النقل في البلاد المتقدمة إنها توفر عددا من وسائط النقل للركاب داخل مدنها لمواكبة تطور المدينة

والتقدم تكنولوجي. تهدف السياسة إلى توفير وسائل النقل الآمنة وبأسعار معقولة، وفعالة في المدينة وزيادة كفاءة الطاقة والحد من التلوث البيئي والزحام المروري والأثار الصحية الضارة، وكذلك الحد من الزحف العمراني. ولكي تكون هذه السياسة فعالة يجب أن تشمل استخدام الأراضي والبنية التحتية وأنظمة النقل العام وشبكات توصيل البضائع.

جدول (٣-٣): أساسيات سياسة النقل الشاملة.

		1 1 1
استعمالات الأرض	•	التنسيق مع القطاعات المرتبطة
البيئة	•	وذات العلاقة
الإقتصاد	•	
الاستخدام الشامل للبيانات المرورية	•	التخطيط الشامل
الاستخدام المناسب في تقنيات تحليل الطلب	•	
تنسيق تنفيذ البناء مع التحكم المروري	•	
أنظمة النقل المختلفة	•	أنظمة النقل متعددة الوسائط
المحطات	•	
تنسيق دفع الأجرة	•	
تنسيق الإستثمار	•	تنفيذ أنظمة النقل
انشاء مرافق النقل	•	
التنظيم	•	إدارة المنافسة للمشاريع
التمويل	•	
طريقة دفع الإجرة	•	

الفصل الرابع عملية تخطيط النقل الحضري

1.1 اهداف تخطيط النقل الحضري Urban Transportation Planning (Objectives)

تساهم المناطق الحضرية في توليد أكثر من ٦٠ ٪ من الناتج المحلي الإجمالي للبلاد بواسطة الأنشطة الاقتصادية المختلفة. يعتمد هذا التوليد على التنقل إلى حد بعيد الذي توفره مرافق النقل المتاحة لفئات مختلفة من سكان البلد. وبالتالي، لا يمكن المبالغة في التأكيد على الحاجة إلى توافر نظام نقل فعال في المدن والضواحي التي تشكل المنطقة الحضرية. إن شبكة الطرق تعتبر شرايين التنقل في المدينة للمستخدمين والبضائع.

يشمل تخطيط النقل الحضري جميع الفعاليات لتحليل المشكلات المرتبطة بالطلب على حركة الأشخاص والبضائع وتحديد الحلول المناسبة لتأمين إمكانية الوصول المستدامة بما يتوافق مع تطلعات المجتمع المعنى. تشمل الأهداف الرئيسية لتخطيط النقل الحضري ما يلى:

 أ. توفير مرافق فعالة واقتصادية ومقبولة بيئيا التي من شأنها أن تشكل نظاما متماسك للمنطقة الحضرية، مما يحسن جودة الحياة.

ب. تطوير آلية فعالة لتشغيل مكونات النظام المختلفة بطريقة منسقة.

ت. التأكد من إن الخطة توفر الاحتياجات طويلة الآجل للمنطقة وتلبي في الوقت نفسه المكونات قصيرة ومتوسطة الآجل.

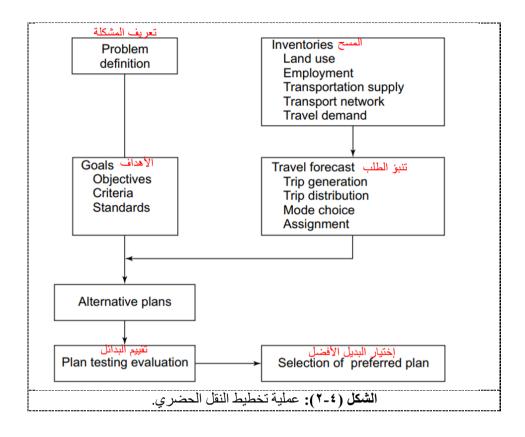
تعتمد عملية تخطيط النقل على الافتر اضات التالية:

أ. إن نمط النقل بكون ملموسا وبمكن التنبؤ به.

ب. يؤثر نظام النقل على تطوير المنطقة ويتأثر بدوره بتطور المنطقة.

ت. توجد علاقة حاسمة بين جميع وسائط النقل. ولا يمكن النظر في جميع وسائل النقل في المنطقة بمعزل عن غيرها في المستقبل.

ث. تتطلب المناطق الحضرية المتجاورة النظر في المشاكل على أساس إقليمي. ج. إن تخطيط النقل هو عملية مستمرة تتضمن التصميم والتنفيذ والمراقبة والتحديث والتحقق واتخاذ التدابير التصحيحية.


يؤثر استخدام الأراضي في منطقة ما بشكل كبير على أنماط النقل، وبالتالي يؤثر على الطلب على مرافق النقل وفي الوقت نفسه يؤثر توفر البنية التحتية للنقل على نمط استخدام الأراضي. وعليه يجب أن يشكل تخطيط النقل جزءا لا يتجزأ من عملية التخطيط الشاملة للمنطقة.

(Hierarchy of urban النقل الحضري لأنظمة النقل الحضري Transportation Systems)

يمكن توضيح التسلسل ألهرمي لأنظمة النقل الحضري بشكل تخطيطي في الشكل رقم (١-٤). عموما يصنف نظام النقل إلى نقل آلي غير آلي، يتضمن النقل الآلي جميع وسائط النقل الآلية (المركبات والقاطرات والطائرات) أما النقل غير الآلي يتضمن الدراجات الهوائية والمشي أو استخدام العربات التي تجرها الحيوانات. كذلك يصنف النقل إلى نوعى نقل البضائع ونقل الركاب.

تتضمن عملية تخطيط النقل الحضري سلسلة من الخطوات المترابطة مع بعضها، التي يشار إليها بإيجاز في الشكل رقم (٤-٢). تحدد مرحلة تعريف المشكلة، شرح المشكلة المراد حلها وهذا يؤدي إلى تحديد الأهداف والغايات والمعايير والمقاييس التي سيتم اعتمادها للمشروع. يتم جمع معلومات المسح فيما يتعلق بعدد السكان، واستخدام الأراضي، والخصائص الاجتماعية والاقتصادية، وتزويد أنظمة النقل الحالية، وسد الطلب الحالي على النقل. باستخدام نموذج مناسبة، يتم اشتقاق أنماط استخدام الأراضي على المدى الطويل والطلب على النقل. يتم إعداد خطط النقل البديلة لتلبية الشروط في الأفق (طويل الأمد) بواسطة اختبار كل بديل وتقييم آثاره السلبية، ثم يتم اختيار البديل الأكثر فعالية من حيث التكلفة للتنفيذ.

1.4 التسلسل لتخطيط النقل الحضري Transportation Planning التسلسل لتخطيط النقل الحضري Sequence)

تتضمن عملية التخطيط الخطوات التالية:

- ١. تحديد المشكلة.
- ١. جمع البيانات والتحليل.
- ٣. الدر اسة بما في ذلك بناء النموذج والمحاكاة.
 - ٤ متطلبات التنبؤ
- ٥. التصميم والتقييم بما في ذلك النظر والتنسيق مع أصحاب المصلحة.
 - الاختيار النهائي للمرافق وصياغة الخطة.

يغطي هذا الفصل الفقرة الأولى والثانية. من أجل فهم مشكلة النقل في منطقة حضرية، يتعين على المخطط دراسة التشكيل الهيكلي الحالي للمنطقة الحضرية، وشبكة النقل، والنمط الحالي لحركة المرور، والخصائص الديموغرافية والاجتماعية والاقتصادية للمواطنين، التي تؤثر على نمط النقل. أولا يجب تحديد منطقة الدراسة. في دراسة النقل الحضري، يجب أن تغطي منطقة الدراسة الكاملة التي تشمل المناطق المبنية الحالية والمحتملة التي تشكل التكتل في المستقبل.

يتم تحديد حدود منطقة الدراسة بخط وهمي يمتد على الحدود الجغرافية للمنطقة ويعتبر الطوق أو النطاق الخارجي (Cordon Outer). تتم دراسة نمط النقل للأشخاص داخل هذا الطوق بالتفصيل. تتم دراسة نمط النقل من وإلى منطقة الدراسة على مستوى واسع النطاق مع إضافة الرحلات الخارجية إلى الرحلات المحلية داخل منطقة الدراسة. يجب تغطية منطقة الدراسة التي من المرجح أن تنمو جنبا إلى جنب مع المدينة التي تشكل المنطقة الأساسية. ينبغي أن تكون المنطقة متوافقة إلى أقصى حد ممكن في الانتشار مع الدراسات السابقة لنفس المنطقة.

(Data Collection) عربة جمع البيانات

يتضمن جمع البيانات عددا من الدر اسات الاستقصائية و الدر اسات الأساسية كما هو موضح أدناه:

- ١. مسح مقابلة الأسرة (أو المنزل).
- ٢. حساب الحجوم المرورية في منتصف الطريق.
- المقابلة على جانب الطريق أو مسح المنشأ والوجهة للرحلات (بداية- نهاية)
 الرحلة.
 - ٤. مسح النطاق الخارجي.
 - مسح خط الفاصل.
 - ٦. دراسة السرعة وزمن التأخير.
 - ٧. مسح مواقف المركبات.
 - ٨. مسح السابلة.
 - ٩. مسح المركبات التجارية.
 - ١٠. مسح النقل العام بما في ذلك مسح المحطات.
 - ١١. مسح شبكة النقل.

في الدراسة التخطيطية، يجب تقسيم المدينة والضواحي التي تشكل منطقة الدراسة إلى عدد من المناطق المتجاورة تماما كما يتم تقسيم المدينة إلى عدد من النطاقات للأغراض الإدارية ولأغراض دراسة حركة المرور يجب تحديد منطقة الدراسة كما يلي:

- أ. كُل نطاق يكون متجانسا في الخصائص، أي من نفس نمط استخدام الأراضي. ب. كل نطاق لا يكون كبير جدا أو ليس صغير جدا، وزمن النقل بين النطاقات المجاورة يستغرق في حدود حوالي ٣ إلى ٥ دقائق بالوسائط السريعة و ١٠ دقيقة بالوسائط البطيئة.
- ت. يجب أن يكون عدد السكان الأمثل للنطاق ٥٠٠٠-١٠٠٠ في المناطق متوسطة الكثافة وقد يصل إلى ٥٠٠٠- في المناطق المكتظة بالسكان.

ج. يجب أن تكون النطاقات محاطة بحدود مادية محددة جيدا "، مثل قناة أو مجرى مائى أو خط سكة حديد.

ح. يجب أن تكون المحطة مشتركة مع الوحدات الإدارية أو وحدات التخطيط الأخرى قدر الإمكان.

خ. يفضل أن تضم النطاقات تدفق الرحلات اليومية.

٤.ه شبكات النقل (Transportation Network)

تتكون شبكة النقل في منطقة حضرية من الطرق وخطوط السكك الحديد، وفي بعض الحالات، يتم إجراء بعض الرحلات عن طريق النقل المائي. تعد خطوط السكك الحديد الذي توفر مرافق النقل داخل المدن ضرورية في المدن التي يبلغ عدد سكانها ٣ ملايين نسمة وأكثر. تتكون أنظمة الطرق أو التسلسل الهرمي للطرق في المدينة من الطرق السريعة والشرايين الفرعية والتجميعية/ التوزيعية والشوارع المحلية.

الشوارع المحلية (Local Streets) كما يوحي الاسم مخصصة في المقام الأول للوصول المباشر إلى مناطق السكن والمؤسسات التجارية المتاخمة للشارع. لا تحمل عادة كميات كبيرة من الحجوم المرورية وتنشأ الرحلة أو تنتهي عليها. تربط شوارع التجميع (Collector Streets) عددا من الشوارع المحلية وتخدم

تربط شوارع التجميع (Collector Streets) عددا من الشوارع المحلية وتخدم في المقام الأول غرض تجميع وتوزيع حركة المرور من الشوارع المحلية وتوفر الوصول إلى المستوى الأعلى التالي من الشرابين الفرعية/ الطرق الشريانية. عادة يتم توفير حرية الوصول منها إلى المناطق المجاورة. يتم فرض قيود قليلة على مواقف المركبات في الشوارع التجميعية، باستثناء بعضها خلال ساعات الذروة. الشوارع الشريانية (Arterials Streets) أعلى التسلسل الهرمي في المدن الصغيرة والمتوسطة الحجم وتكون مخصصة بشكل أساسي لحركة المرور يجب أن يكون طريقا سريعا مستمرا لربط منطقة تجارية مركزية بالمناطق السكنية النائية والعقد الحضرية (التقاطعات) أو ربط العقد (التقاطعات) الحضرية والمراكز الصناعية. قد تشكل جزءا من الطرق السريعة الرئيسة (الوطنية أو الطرق الإقليمية) التي تمر عبر المدينة أو تنطلق منها. يحظر عمليات وقوف السيارات في الشوارع الشريانية جنبا إلى جنب مع أي طريق سريع، التي تشكل شبكة الطرق الرئيسية للمدينة/ مركز العاصمة. تكون الشوارع الشريانية متباعدة عموما على مسافة ٥,١ كم في المناطق المكتظة بالسكان إلى ٤ كم في المناطق منخفضة الكثافة السكانية (الخارجية/ النائية). تكون أغلب الشوارع الشريانية طريقا مقسما في الأقل إلى أربعة ممرات مع توفير وإتاحة ممرات السابلة ومسارات الدراجات وتقتصر مناطق عبورها على التقاطعات مع الطرق الأخرى.

يتم توفير الطرق السريعة الحرة أو الطرق السريعة في المناطق حضرية الكبيرة، لهدف أساسي وهو الحجم المروري العالي. يمكن تعريفها أيضا "إنها الطرق السريعة الشريانية لحركة المرور مع التحكم الكامل أو الجزئي في الوصولية. سيكون لديهم فصل في الحركة باستخدام التقاطعات ذات المستويات المختلفة. تقوم الشوارع الحرة الشريانية بربط النقاط الرئيسية لتوليد حركة المرور في الطريق ويوفرون الوصولية للمناطق التجارية المركزية أيضا. كذلك تخدم حركة المرور ذات المسافة المتوسطة والطويلة. إن عمليات وقوف المركبات ممنوعة منعا" باتا على الطريق السريع حتى حركة السابلة غير مسموح بها.

3 . ٦ مسوحات تجميع البيانات (Surveys for Data Collection) 1 . ٦ . ٤ مسح مقابلة الأسرة (Household Interview Survey) يهدف مسح المقابلة المنزلية (مقابلة الأسرة) إلى جمع البيانات حول:

١. تكوين الأسرة

Y. الخصائص الاجتماعية والاقتصادية لكل فرد من أفراد الأسرة، بما في ذلك العمر والجنس والمهنة والدخل وملكية المركبة وحالة القيادة ومستوى معرفة القراءة والكتابة.

٣. خصائص الرحلة ليوم عمل، ويفضل أن يكون اليوم (ينبغي أن يكون يوم عمل) قبل يوم المسح لكل عضو. يتم إجراء مسح للرأي بين البعض ولنسب مئوية مختارة عشوائيا من الأعضاء مستخدمي النقل حول جوانب مختلفة من رحلاتهم/ تنقلهم والسياسات البديلة مثل إدخال طرق جديدة ودفع الأجرة والجوانب المختلفة للخدمة المقدمة و تدابير إدارة النقل.

يتم تدوين التفاصيل الكاملة للرحلة الخارجية بدءا من مكان الإقامة حتى الوصول إلى الوجهة والعكس بالنسبة لرحلة العودة. يتم أيضا تدوين التفاصيل الكاملة لرحلة الذهاب بدءا من مكان الإقامة حتى الوصول إلى الوجهة والعكس بالنسبة لرحلة الإياب. ستغطي التفاصيل المدونة الغرض من الرحلة، وسيلة النقل المستخدمة، وأوقات الوصول، ووقت الانتظار والزمن المستغرق في المركبة، والنفقات من الجيب لكل مكون. إذا كان أي فرد من أفراد الأسرة قد قام بأي رحلة (العمل أو التسوق، إلخ.) خلال النهار، سيتم تدوين تفاصيل مماثلة بصفة رحلة منفصلة بنفس الطريقة. وتدوين جميع الرحلات بين النطاقات فقط وأخذها في الاعتبار للتحليل. يمكن أن يكون الوقت المستغرق لإجراء مثل المسح لكل أسرة حوالي ٢٠ إلى ٤٠ يمكن أن يكون الوقت المستغرق لإجراء مثل المسح لكل أسرة حوالي ٢٠ إلى ٤٠ العطلات أو المساء عندما يكون رب الأسرة ومعظم صانعي الرحلات متاحين. إذا كان عدد العدادين أقل، يقوم العداد بدلا من ذلك بجمع التفاصيل الاجتماعية والاقتصادية وترك الأوراق لتدوين تفاصيل الرحلة من قبل رب الأسرة بعد أن يطلب منه ذلك ومن ثم تحصيلها بعد يوم أو يومين. بهذه الطريقة، يمكن للعداد يطلب منه ذلك ومن ثم تحصيلها بعد يوم أو يومين. بهذه الطريقة، يمكن للعداد

تغطية ٤ إلى ٥ أسر في الساعة. مع ذلك هناك بعض المخاطر من تفاصيل الرحلة أن تكون ليست كاملة وصحيحة وعليه يجب استخدام عوامل التوسع المناسبة، اعتمادا على النسب المئوية للأسر المشمولة في كل منطقة في أثناء تحليل البيانات.

٢٠٦٠٤ مسح الحجوم المرورية في منتصف الطريق-Traffic Survey-Mid

يتم إجراء تعداد منتصف الطريق خلال أيام الأسبوع على جميع الطرق المزدحمة من أجل دراسة الكثافة المرورية بشكل مستمر لمدة ١٦ ساعة تقريبا من أجل تقييم الحجم المروري اليومي الإجمالي ونمط الذروة بالإضافة إلى اتجاهه. يتم إجراء التعداد للمركبات حسب تصنيفها وتدوينه عموما على فترات ١٥ دقيقة. يمكن الحصول من هذه البيانات على نسبة الحجم/ السعة لمقاطع الطريق من أجل المساعدة في التخطيط لإستراتيجيات طويلة الأمد ولتخفيف وزيادة انسيابية حركة المرور. كما سيتم تحديد المقاطع المعرضة للحوادث. وفي الوقت نفسه، يلاحظ أبضا إشغال المركبات على أساس العبنة.

أنواع مختلفة من المركبات تجوب الطرق والمساحة التي تشغلها لكل وحدة زمنية مختلفة تماما عن بعضها البعض. من أجل تقييم حجم التدفق المروري وسعة الطريق الاستيعابية، من الضروري استخدام وحدة قياسية للمركبات. المواصفة القياسية العامة هي اعتماد وحدة تعرف باسم وحدة المركبات القياسية (PCU ،unit الغامة هي اعتماد وحدة تعرف باسم وحدة المركبات القياسية لحركة المرور الأخرى. إذا تمت إضافة مركبة واحدة من النوع المماثل في الساعة في التدفق المروري بنفس يؤدي إلى انخفاض متوسط سرعة المركبات المتبقية في التدفق المروري بنفس مقدار تقليل السرعة التي كان سيحدث بسبب إضافة مركبة واحدة في التدفق، وتكون قيمة المعامل (PCU) لمثل هذه المركبة ، ١. تعتمد هذه القيمة على حجم وسرعة المركبة وكذلك نوع الطريق (حضري، ريفي) والموقع على الطريق (دوار، إشارة ضوئية، منتصف الطريق). يعرض الجدول رقم (١٠٠١) قيم (PCU) المعتمدة محليا في العراق حسب المواصفة العراقية للطرق والجسور (٢٠٠٣).

جدول (٢-٤): قيم وحدة مركبات القياسية (PCU).

Class of vehicle	Flat Terrain
Motorcycle الدراجات	0.5
المركبات الخاصة والإجرة Private car and taxi	1.0
Pick-up, van, and bus up to 24 passengers	1.25
Truck and trailer combination الشاحنات	2.0 المقطورات و
Heavy vehicle المركبات الثقيلة	3.0

Roadside Interview RSI مسوحات المقابلة على جانبي الطريق Survey)

يتم دمج هذا المسح عموما مع بيانات الحجوم المرورية في النطاق المحيطي لمنطقة الدراسة. في المدن الصغيرة، يتم اختيار نطاق واحد في المحيط الخارجي ويتم تثبيت نقاط المسح على جميع الطرق الشعاعية التي تدخل المدينة. في المناطق الحضرية الكبيرة، يتم اختيار أكثر من نطاق واحد. سيكون النطاق الخارجي على حدود منطقة الدراسة والطوق الداخلي عند الدخول إلى المدينة أو المنطقة المركزية (منطقة تجارية مركزية).

في هذه النقاط، يتم إجراء تعداد المركبات لمدة ٢٤ ساعة بنفس الطريقة المتبعة في مسح منتصف الطريق. إضافة إلى ذلك، يتم إجراء مسح بداية ونهاية الرحلة عن طريق إيقاف بعض المركبات وإجراء الاستفسارات على أساس النسب المئوية. عموما، يتم إيقاف ١٠٪ من المركبات، ويتم إجراء المقابلات، واختيار واحدة من كل ١٠ مركبات.

يجب أن تغطي جميع أنواع المركبات ويمكن تقليل حجم العينة في ساعات الذروة. هناك طريقة بديلة تتمثل في أن يقوم المساح بإيقاف أحد المركبات ومقابلتها وبمجرد إكمالها يوقف المركبة التالية القادمة ويتم المقابلة. في الأوقات المزدحمة، يمكن إشراك أكثر من شخص لإجراء المقابلة. هناك بديل آخر وهو إيقاف كل مركبة وإعطاء استبانة محضر مسبقا للسائق ويطلب منه إكماله وإرساله بالبريد إلى مكتب المسح. لكن هذه الطريقة الأخيرة غير موصى بها لأن العديد من متلقي الاستبانة لا يستجيبون. من أجل تجنب التأخير للمركبات الأخرى، يتم إنشاء حيز عند نقطة العد لتحويل عينة المركبات إليها ومقابلة السائق. ستستغرق كل مقابلة حوالي ١٠ دقائق. يغطي الاستبانة الموقع، التصنيف ورقم تسجيل لوحة المركبات، عدد الركاب، بداية أو منشأ الرحلة، والوجهة للرحلة مع تصنيف استخدام الأراضي، الغرض من الرحلة للركاب والتوقف في الطريق. ستساعد بيانات المسح في التحقق من نتائج مسح المقابلة البيتية ومعايرة النموذجات المختلفة. إن تعداد المركبات يجب أن تتم مدة ٢٤ ساعة، ويقتصر مسح منشأ- نهاية الرحلة على ١٦مدار ساعة في أيام العمل.

ستعطي البيانات التي تم تحليلها الحجوم المرورية وتصنيف المركبات وتوزيعها خلال الساعة ونمط المنشأ والوجهة للرحلات. تساعد بيانات المنشأ الوجهة التي تم جمعها في فهم النمط الحالي لحركة المرور والاستقراء للمستقبل من أجل القيام بالتخطيط العلمي لأنظمة النقل ومرافق النقل الجماعي في المنطقة الحضرية. في الواقع، حاول بعض المخططين تطوير نموذج استجابة سريعة لمثل هذا التخطيط

باستخدام بيانات المنشأ- الوجهة والبيانات المرورية، مع الاستغناء عن مسوحات المقابلات البيتية.

١٠٦٠٤ مسوحات النطاق الشريطي (Screen Line Survey)

يماثل مسح النطاق الشريطي إلى تعداد الحجوم المرورية ويتم إجراؤه في مواقع مختلفة في منطقة الدراسة عند التقاطعات على طول الحواجز الطبيعية مثل الأنهار والقنوات وخطوط السكك الحديد. إن الغرض الأساسي من هذا المسح هو التحقق من صحة النموذجات المطورة. بناء على مسح المقابلة البيتية، يتم تعيين الرحلات التي ستعطي الحجوم المرورية على مسارات الطرق مختلفة، ومن خلالها يمكن تحديد الرحلات التي تمر عبر النطاق الشريطي. يتم التحقق من البيانات في مواقع تقاطع النطاق الشريطي ويمكن إجراء أي تعديلات لغرض معايرة النموذج.

١٠٦٠٥ دراسات السرعة-التدفق (Speed-Flow Studies)

إن الوقت المستغرق لاجتياز طول الطريق هو الدالة للسرعة والتأخير. سيكون هذا مختلفا بالنسبة ساعات الذروة وساعات خارج الذروة لأن السرعة نفسها تعتمد على الحجم المروري مقابل السعة الاستيعابية. بالتالي ستتغير الظروف عندما يزداد الحجم المروري في المستقبل. من أجل تقييم السعة المستقبلية على الطرق المختلفة مع وبدون تحسينات، يتم تطوير نموذجات لفئات مختلفة من الطرق، حيث لا يمكن القيام بذلك للطرق الفردية. يتم ذلك عن طريق إجراء مسوحات تدفق السرعة بطريقة المراقب المتحرك باستخدام طريقة المركبة العائمة. الهدف هو تحديد سرعة الرحلة أو زمن الرحلة على مقطع الطريق. يتنقل المساح في مركبة مع حركة المرور ويدون زمن الرحلة وفي نفس الوقت يدون عدد المركبات التي يتجاوزها وعدد المركبات التي تتجاوزها الرحلات ذهابا وإيابا على الطريق ويدون متوسط النتائج. يتم حساب سرعة الرحلة على النحو التالي:

نفرض (t_s) و (t_n) زمن الرحلة المستغرق للرحلات في الإتجاه الجنوبي والشمالي على التوالي؛ (x_s) و (y_n) عدد المركبات التي تم تجاوز ها خلال الرحلة.

يحسب معدل التدفق في الإتجاه الشمالي كما في المعادلة (٤-١) أدناه:

$$q_n = (x_s + y_n)/(t_s + t_n)$$
بصورة مماثلة:

$$(7-\xi) q_s = (x_n + y_s)/(t_s + t_n)$$

معدل زمن الرحلة للإتجاه الشمالي كما في المعادلة (٤-٣):

$$(\tilde{\tau}_{-}\xi) \qquad \qquad \tilde{t}_n = t_n - (\frac{y_n}{a_n})$$

معدل زمن الرحلة للإتجاه الجنوبي كما في المعادلة (٤-٤):

$$(\xi - \xi) \qquad \qquad \dot{t}_S = t_S - (\frac{y_S}{q_S})$$

إذا كان طول المقطع للطريق ١، سرعة الرحلة للإتجاه الشمالي:

$$=\frac{L}{t_n}$$

إذا كان طول المقطع للطريق ١، سرعة الرحلة للإتجاه الجنوبي:

$$=\frac{L}{\hat{t}_S}$$

عند حساب السرعة وزمن الرحلة يجب تحويل المركبات إلى وحدة المركبة القياسية (PCU). كما يتم اعتماد استخدام نظام تحديد المواقع العالمي (GPS) في الوقت الحالي لاستخلاص سرعات الرحلة على مقاطع مختلفة من الطرق والشوارع بواسطة المراقبة عن بعد للمركبة المتحركة في مثل هذه الدراسات.

(Parking Survey) مسح مواقف المركبات

مع النمو السريع لملكية المركبات الشخصية، أصبحت مواقف المركبات مشكلة كبيرة في المدن حتى الضواحي. يجب إجراء مسوحات وقوف المركبات على الطرق وأجزاء مختلفة من المدينة لتقييم الطلب على مواقف المركبات ومعرفة أفضل السبل للتحكم في الطلب وتنظيمه وكيف يمكن تلبية الحاجة على الطلب. يتطلب جمع البيانات الأساسية مثل المواقع، ومسح أماكن وقوف المركبات المتاحة في كل موقع، والطلب على أماكن وقوف المركبات، والفترة الزمنية للوقوف. من أجل تحديد المواقع، يتم إجراء استطلاع عام لمنطقة الدراسة ويجب أن يغطي مسح مواقف المركبات مناطق التسوق الرئيسية والمراكز التجارية ومحطات السكك الحديد ومناطق المؤسسات الرئيسية.

إضافة إلى ذلك، يجب تغطية المواقع التي من المحتمل أن تكون فيها الحافلات والمركبات التجارية متوقفة لفترة قصيرة وطويلة والشوارع الأخرى الذي يتم فيها إيقاف المركبات. وعادة ما يتم ذلك من الساعة ٨ صباحا حتى الساعة ٨ مساء، ويتألف المسح من تدوين عدد الأماكن المتاحة، ونوع وقوف المركبات (متواز أو عمودي أو بزوايا أخرى)، ورقم تسجيل لوحة المركبات المتوقفة في الحيز المخصص كل نصف ساعة أو فاصل زمني أقرب ويتم ذلك في يوم عمل نموذجي.

(Pedestrian Survey) مسح السابلة

يتم إجراء مسح السابلة في مواقع مهمة حيث تتدفق السابلة بكثافة مدة ١٢ ساعة في يوم العمل وفي أيام العطلات. يتم ملاحظة عرض ونوع الأرصفة المتاحة وأي تجاوزات وحساب حجم تدفق السابلة الذين يمشون على طول الطريق وعبوره كل نصف ساعة أو أقل خلال ساعات الذروة.

(Commercial Vehicle Survey) مسح المركبات التجارية

تتم دراسة نمط التحميل والتفريغ للبضّائع والمنشأ والنهاية للرحلة وتفاصيل حركة المركبات التجارية اليومية بواسطة استبانة يتم توزيعه على مشغلي النقل المختلفين، بصرف النظر عن التعداد الذي يتم إجراؤه جزءا من مسح النطاق والفاصل. يكون هذا النوع من المسح مطلوبا للتنبؤ المستقبلي لحركة المرور المحتملة وتأثيرها على الحركة في طرق المدينة.

(Public Transport Survey) مسح النقل العام

يغطى هذا النوع مسح مركبات النقل العام، والسعة، وأنماط المسارات، والجداول الزمنية، وطبيعة دفع الأجرة. هذه الخواص يتم جمعها من المشغلين للنقل العام. يتم إجراء المسح التشغيلي من قبل الموظفين وكذلك من قبل مراقب يتنقل في بعض الحافلات على الطرق الرئيسية لدراسة نمط التحميل. يتم جمع بيانات مماثلة لأنماط النقل بالسكك الحديدية ويمكن أيضا دراسة أنماط التحميل بواسطة بيانات التذاكر الذي تم جمعها من المشغل.

٤ · ٧ حجم العينة (Sampling)

لا يمكن أن تغطي أي من المسوحات المذكورة في الفقرات السابقة جميع السكان أو جميع الطرق. يجب أن تكون المسوحات على أساس العينة ويكون اختيار العينة بحيث يغطي المنطقة كلها ويكون ممثل تمام الأحجام العائلات المختلفة ومستويات الدخل والمهن وأنواع ملكية المركبات. لقد وجد أن حجم العينة يعتمد على مبدأ أنه كلما كان عدد السكان أصغر، زادت العينة. وضع (BPR) هيئة الطرق العامة في الولايات المتحدة الأمريكية (7) المعايير التالية لحجم العينة حسب عدد السكان في منطقة الدراسة كما موضح في الجدول رقم (2 - 2). إن الحد الأدنى لحجم العينة لمسح شامل هو 7 والحد الأقصى 9 . في حالة تحديث الدراسات الاستقصائية في المدن الكبيرة عدد سكانها 9 ملايين وما فوق يعد 9 حجم عينة كاف.

الجدول رقم (٤-٢): حجم العينة الموصى بها (١٨).

Population in Study Area	Sample size % of Households
عدد السكان في منطقة Below 50,000	حجم العينة (HH) %)
50,000 to 150,000	12.5%
150,000 to 300,000	10%
300,000 to 500,000	6.7%
500,000 to 1 million	5%
Over 1 million	4%

الأنواع المختلفة لأخذ العينات المعتمدة هي:

- ١ العنات العشوائية
 - ٢. العينات الطبقية
- ٣. العينات العنقودية
 - ٤. العبنات النسبية

العينات العشوائية: كما يوحي الاسم، ينطوي على اختيار الأسرة التي سيتم مسحها بطريقة عشوائية. وهو يضمن أن كل فرد أو أسرة لديها فرصة متساوية لإدراجها في الدراسة الاستقصائية. تتمثل هذه الطريقة في كتابة أرقام أبواب المنازل في الشارع على قصاصات من الورق، ووضعها في صندوق، وتحديد الأرقام المطلوبة على قسيمة كما في السحب. يتم إعطاء أرقام الأبواب المختارة للمساح لإجراء مسح المقابلة أو الرأي. طريقة أخرى هي قائمة الأرقام العشوائية وبناء على ذلك يتم اختيار الأسر وفقا لتلك القائمة. عادة، يتم الحصول على تفاصيل الشوارع وقوائم أرقام الأبواب من مكاتب البلدية. بدلا "من ذلك، يمكن استخدام قائمة الناخبين ويتم اختيار عينة المنزل لإجراء مقابلات معهم باستخدام رقم عشوائي. ويمكن إجراء مسوحات المقابلة البيتية باستخدام هذه الطريقة أيضا.

العينات الطبقية: يتم ذلك عن طريق تقسيم السكان إلى مجموعات مختلفة بناء على خصائص محددة مثل العمر والجنس والدخل وملكية السيارة. يمكن أن يكون تصنيف الدخل، على سبيل المثال، (تحت خط الفقر)، أو منخفض الدخل، أو متوسط الدخل، أو مرتفع الدخل، أو يعتمد على ملكية السيارة (لا يوجد مالك مركبة، أو مالك دراجة، أو مالك عربة ذات عجلتين بمحرك، أو مالك مركبة)، إلخ. من أجل استخدام هذه الطريقة، يجب أن تكون التفاصيل الديموغرافية الأساسية في المنطقة متاحة قبل بدء المسح. على سبيل المثال، يمكن أن تكون تقارير التعداد هي الأساس. يتم اختيار العينات عن طريق التمثيل النسبي، على أساس النسبة المئوية. هذه

المنهجية أكثر فائدة لإجراء استطلاعات الرأي ودراسة سلوك السكان فيما يتعلق بعادات النقل واختيار وسيلة النقل.

العينات العنقودية أو الجماعية: تشير إلى جمع العينات بواسطة تجميع مناطق مختلفة في مجموعات متجانسة مثل الأحياء الفقيرة أو المساكن أو المنازل المستقلة أو المناطق ذات المستويات المنخفضة من التطور والتطور الطبيعي والتطور الجيد.

العينات النسبية: تستخدم عندما يقترح تقييد عدد العينات. في هذه الطريقة، يتم تحديد عدد الأسر الذي سيتم مسحها في كل منطقة ويتم اعتماد الشيء نفسه لجميع النطاقات. ضمن هذا العدد المحدد، يجب على المحقق اختيار الأسر لتمثيل مختلف المستويات الاجتماعية والاقتصادية وأصحاب المركبات.

٤ · ٨ تحليل التأثير البيئي (Environmental Impact Analysis)

ستؤدي دراسة تخطيط النقل الحضري دائما إلى الحاجة إلى تحسين نظام النقل في المدينة من أجل مواكبة النمو في الطلب على النقل. قد يتعلق هذا التحسن بشبكة النقل الذي تدعو إلى توسيع شبكات الطرق، وإنشاء طرق جديدة مثل الطرق الدائرية، والممرات الجانبية، والجسور العلوية، وتحسينات التقاطع مع الدوارات أو الإشارات الضوئية، حتى إدخال أنظمة نقل جماعي جديدة مثل النقل السريع بالحافلات، والنقل بالسكك الحديدية الخفيفة، والقطار الأحادي. كل هذه الأعمال سيكون لها بعض التأثير على التوازن البيئي في المدينة. سيكون التأثير البيئي الناجم عن أعمال الطرق الجديدة الرئيسة وإدخال النظام الجديد كبيرا للغاية وسيتطلب تخطيلا تفصيليا.

وتتمثل أحد الأهداف الرئيسية في مجال النقل والتخطيط الحضري، في الوقت الحاضر، هي تحقيق التنمية المستدامة. إن معظم البلدان جعلت إلزاميا أن تكون أي دراسة رئيسة لتخطيط البنية التحتية وإنشاء الطرق الجديدة أو شبكات السكك الحديد مصحوبة بتقرير تحليل الأثر البيئي (Environmental Impact Analysis).

(Coverage of Environmental تغطية تحليل التأثير البيئي Impact Analysis)

يجب أن يغطى أي تحليل للأثر البيئي على الجوانب التالية:

- ١. أي ميزة جيولوجية/ جيومورفولوجية محلية ذات أهمية
 - ٢. أي هيكل تراثى أو هيكل ذي أهمية دينية/ تاريخية
- ٣. طبولوجيا بما في ذلك التكوينات الطبيعية والمسطحات المائية
 - ٤. التداخل مع أي مصدر إمدادات المياه/ نمط الصرف
 - التغيرات في استخدام الأراضي وتأثير الفصل

- ٦. جودة الهواء وتلوث الغلاف الجوى
- ٧. التصريف المحتمل والنفايات والتخلص منها.
 - ٨. الضوضاء
 - ٩. الغابات والأشجار والتغطية الخضراء
 - ١٠. البيئة والحفاظ على الطبيعة
 - ١١. التأثير ات المرئية و المناظر الطبيعية
- ١٢. تأثير عمليات البناء مثل الضوضاء والتلوث وما إلى ذلك.

وينبغي أن يشمل التحليل الآثار الإيجابية والسلبية على السواء. ويجب أن تشمل تدابير التخفيف الإجراءات التي يتعين اتخاذها في أثناء التنفيذ وبشكل دوري بعد ذلك. وعليها أن تحدد آليات الرصد.

Objectives of Mitigation التخفيف ۲۰۸۰۶ أهداف تدابير أو مقاييس التخفيف Measures)

تحتاج الجيولوجيا أو المناطق ألهشه شكليا الذي تقع على محاذاة المرفق أو بالقرب منه إلى الحماية من الانهيار. يجب تجنب إمكانية التسبب في مشكلات تآكل التربة أو تفاقمها. من المهم ألا يتم إز عاج أي بنية ذات أهمية تاريخية أو معمارية أو ذات أهمية دينية كبيرة من أجل تحديد موقع المنشأة و عدم تشويهها بسبب التلوث أو الاهتزاز الناجم عن حركة المرور باستخدام المنشأ.

إذا كان الطريق أو خط السكك الحديد يمر عبر المنحدر الطبيعي الذي يعيق التدفق الحر لمياه الأمطار، فيجب توفير فتحات تصريف متقاطعة كافية وتجنب قطع المياه. يجب الحفاظ على المسطحات المائية ذات الأهمية للصرف المحلي أو بصفة مصدر للمياه وحمايتها أيضا من التعدي والتلوث. تسرب النفط والديزل وما إلى ذلك من المركبات المارة على الطرق أو المحطات الجديدة ومستودعات الحافلات يمكن غسلها بالمطر أو مياه الغسيل وقد تلوث الجداول والأجسام المائية حتى تتسرب وتتسبب في تلوث المياه الجوفية. تدعو اللوائح إلى إجراء اختبارات ودراسات أساسية لموارد المياه في وقت التحقيقات وتحديد المعابير التي يجب الحفاظ عليها وكذلك وضع آليات للرصد.

سيكون لكل مرافق النقل تأثير كبير على نمط استخدام الأراضي على كلا الجانبين. يمكن أن يكون امتداد التأثير إلى ٣ حتى إلى ٤ كيلومترات على كلا الجانبين حسب طبيعة الطريق أو خط السكك الحديد. كما سيتداخل مع حرية الحركة عبر المنشأ في حالة الشرايين الرئيسة والطرق السريعة وخطوط السكك الحديد في نفس المستوى. ويلزم دراسة أثر هذه المحددات وتوفير تسهيلات كافية للعبور في حالة التعارضات. ستتأثر جودة الهواء في ممرات الطرق بالتلوث بسبب انبعاثات الغازات مثل ثاني أكسيد الكربون وأحادي أكسيد الكربون، أكاسيد النيتروجين، الخ،

والجسيمات من المركبات المارة وكذلك الغبار الذي تثيره. وسيكون تأثيرها على التنفس لمستخدمي الطرق والمقيمين بالمباني القريبة أيضا. إن تأثيرها على المباني الحساسة التي تضم المستشفيات والمدارس والمؤسسات البحثية والهياكل التراثية له أهمية كبيرة. بالمثل، سيكون هناك تأثيرا سلبيا على السكان بسبب ارتفاع مستويات الضوضاء والاهتزاز الذي ستنتج المركبات المارة، ولا سيما مركبات السكك الحديد. يجب دراسة هذا التأثير على منطقة تأثير تمتد لحوالي ٢٠٠ متر على كلا الجانبين. يتم طلب قياسات خط الأساس في حالات جودة الهواء والضوضاء في مواقع محددة، التي يمكن مراقبتها بشكل دوري بعد بناء المنشأ وتشغيله.

يتم تعريف علم البيئة على أنه "دراسة علمية للعلاقة المتبادلة بين الكائنات الحية وبيئتها، مثل المناخ والتربة والطوبولوجيا". من ناحية أخرى، يشير الحفاظ على الطبيعة إلى الحفاظ على التوازن في تنوع وخصائص المنطقة الأخرى والحياة البرية. وهذا يشمل أيضا الأنواع النادرة من الطيور والزواحف والطيور المهاجرة الموسمية. مع أن لن تكون هناك حماية للحياة البرية في المناطق الحضرية، فإنه يمكن أن تكون هناك حالات استثنائية في المناطق الساحلية والمناطق شبه الحضرية على أطراف الغابات ومدن التلال.

تدعو دراسة التأثير الاجتماعي والاقتصادي إلى إجراء مشاورات محلية مفصلة مع الأشخاص الذين يعيشون على طول الممر للطريق ولا سيما أولئك الذين ستتأثر ممتلكاتهم بشكل مباشر أو الذين سيحتاجون إلى إعادة التوطين أو إعادة التأهيل. يجب إيلاء اهتمام خاص لاحتياجات التواصل بين المجموعات التي سيتم فصلها وسيتعين عليها العيش على جانبي الطريق أو خط السكك الحديد.

سيكون هناك اضطراب في شكل غبار وضوضاء واضطرابات أخرى للسكان في المنطقة المجاورة مباشرة على كلا الجانبين بسبب العمال والألات في أثناء عمليات البناء. في حالة أعمال التحسين أو بناء جسور جديدة، إلخ، قد يضطر المستخدمون في المنطقة إلى إجراء عمليات تحويل، مما يسبب عدم الراحة والتأخير. يجب تحديد تدابير التخفيف لتقليل هذا الإزعاج.

(Air Pollution) تلوث الهواء ٣٠٨٠٤

إن تلوث الهواء هو خطر بيئي كبير في المدن. يجب أن يهدف التخطيط الحضري إلى توفير البنية التحتية التي تسهل خفض مستوى التلوث العام وتضمن أيضا عدم وصوله إلى مستوى شديد الخطر في أي مكان. يجب دراسة أي اقتراح جديد في ضوء التأثير المحتمل على مستويات التلوث. ولضمان ذلك، سيكون من الضروري التحقق من مستوى التلوث في المواقع الحرجة على طول الممر المقترح وإنشاء آليات رصد لعمليات التفتيش المستمرة. وضع المجلس المركزي الدولي لمكافحة التلوث المعيار المطبق في مناطق مختلفة، وكما موضح في الجدول رقم (٣-٤).

الجدول رقم (٤-٣): المعايير الدولية لجودة الهواء المحيطة (١٩).

Pollutants	Time- weighted		Concentration in Ambient Air		Method of Measurement
	Average	Industrial Areas	Residential, Rural & Other Areas Sensitive Areas	Sensitive Area	
Sulphur Dioxide (SO ₂)	Annual Average*	80 μg/m ³	60 μg/m ³	15 μg/m ³	- Improved West and Geake Method - Ultraviolet Fluorescence
	24 hours**	120 μg/m ³	80 μg/m ³	30 μg/m ³	
Oxides of Nitrogen as	Annual Average*	80 μg/m ³	60 μg/m ³	15 μg/m ³	- Jacob & Hochheiser Modified (Na-Arsenite) Method
(NO_2)	24 hours**	120 μg/m ³	80 μg/m ³	30 μg/m ³	- Gas Phase Chemiluminescence
Suspended Particulate Matter (SPM)	Annual Average*	360 µg/m ³	140 μg/m ³	70 μg/m ³	- High Volume Sampling, (Average flow rate not less than 1.1 m³/minute).
	24 hours**	500 μg/m ³	200 μg/m ³	100 μg/m ³	
Respirable Particulate	Annual Average*	120 μg/m ³	60 μg/m ³	50 μg/m ³	- Respirable Particulate matter sampler
Matter (RPM) (size less than 10 microns)	24 hours**	150 µg/m ³	100 μg/m ³	75 μg/m ³	
Lead (Pb)	Annual Average*	1.0 µg/m ³	0.75 μg/m ³	0.50 µg/m ³	- ASS Method after sampling using EPM 2000 or equivalent Filter paper
	24 hours**	1.5 μg/m ³	1.00 μg/m ³	0.75 μg/m ³	
Ammonia	Annual Average*	0.1 μg/ m ³	0.1 μg/ m ³	0.1 μg/m ³	
	24 hours**	0.4 mg/ m ³	0.4 mg/m ³	0.4 mg/m ³	
Carbon	8 hours**	5.0 mg/m ³	2.0 mg/m ³	1.0 mg/ m ³	- Non Dispersive Infra Red (NDIR)
Monoxide (CO)	1 hour	10.0 mg/m ³	4.0 mg/m ³	2.0 mg/m ³	Spectroscopy

تتسبب زيادة عدد المركبات في الطرق الحضرية التي تعمل بالبنزين والديزل تلوث الهواء. الأول ينبعث منه المزيد من أحاديا أكسيد الكربون وثاني أكسيد الكربون، في حين تصدر مركبات الديزل المزيد من الجسيمات (الدخان) وأكاسيد النيتروجين. من أجل السيطرة على هذا، وضعت جميع البلدان معايير انبعاثات صارمة للمركبات في مرحلة التصنيع نفسها كما موضح في الجدول رقم (3-3). أصبح الفحص الدوري للمركبات لمعرفة مستوى الانبعاثات إلزاميا. يتعين على المخططين تقييم مستويات تلوث الهواء المحتملة بناء على الحجوم المرورية المقدرة في المواقع الحرجة.

الجدول رقم (٤-٤): معايير الإنبعاثات للمركبات (١٩).

Vehicle Type	Year From	Reference Standard	CO	HC	NOx	PM- Particle Matter
Heavy diesel	2005	Euro II	4.00	1.1	7.0	0.15
	2010	Euro III	2.10	0.66	5.0	0.10
Light diesel	2005	Euro II	1-1.50	0.70 - 1.20		0.08 - 0.17
Gasoline 4 wheeler	2005	Euro II	2.2 – 5.0	0.5 – 0.7	-	
Gasoline 3 wheeler	2005	Bharat 2	2.25	2.00	-	
Gasoline 2 wheeler	2005	Bharat 2	1.50	1.50	-	

۱۸۰۶ التلوث الضوضائي (Noise Pollution)

الضوضاء خارج المستوى يسبب عدم الراحة للسكان ومستخدمي الطريق كذلك. عموما، فإنه يسبب الانزعاج والاضطراب. إنه يتداخل مع النوم الطبيعي ويزعج التركيز على العمل أو الدراسة، وقد يؤثر حتى على الاستماع إلى بعضنا البعض في المحادثة بسبب الضوضاء التي تنتجها المركبات القريبة. يمكن أن يؤدي المستوى العالي للغاية من الضوضاء لفترات طويلة إلى عدم الراحة الجسدية والصمم المحتمل. يتم قياس مستوى الضوضاء بوحدات ديسيبل (dBA)، وهي دالة لو غاريتمية لضغط الصوت. يمثل صفر ديسيبل عتبة سماع أدنى لضغط صوت يمكن إجراؤه على هذا المقياس. من المفترض أن ينتج الهمس ضوضاء تبلغ ٢٠ ديسيبل.

من المحتمل أن يتم إزعاج التركيز الطبيعي للشخص عند ٢٠ ديسيبل وتصبح الضوضاء مؤلمة عند مستوى ٨٠ ديسيبل. يعتمد مستوى الراحة للضوضاء على حكم شخصي. في حين أن مستوى ٢٠ ديسيبل يعتبر هادئا "، فإن أي مستوى أعلى من ٩٠ ديسيبل عد صاخبا للغاية من قبل الكثير. تنبع الضوضاء من عمل المحرك في السيارة وتزداد عند السرعات العالية أو عندما تنقل السيارة أحمالا أثقل، خاصة على الطريق ذي الانحدار الحاد. تصدر الدورات الحركية بطبيعتها وشاحنات الديزل الثقيلة ضوضاء أعلى من السيارات والشاحنات الخفيفة. يعد التفاعل بين الإطارات والطرق منتجا رئيسيا للضوضاء على الطرق. التفاعل بين السكك الحديد والعجلات للقطارات يسبب مستويات أعلى من الضوضاء.

تنتج القطارات أيضا ضوضاء أعلى عند المفاصل عندما تمر العجلات فوق مفاصل السكك الحديد. القطار في أثناء الحركة يمكن أن ينتج ضوضاء من مستوى ٩٢ ديسيبل، وشاحنة من ٩٠ إلى ١٠٠. إن تأثير الضوضاء في الأنفاق والطرق الضيقة

ذات المباني العالية على كلا الجانبين يكون أكثر حدة. يصبح التحقق من التلوث الضوضائي مهما خاصة عند اقتراح طرق مرتفعة جديدة ومرافق سكك حديدية في أي ممر في المدينة. إذا تم مرور مثل المرافق بأي مواقع حساسة مثل المدارس والمستشفيات وحدائق الحيوان والمؤسسات البحثية، فإن القضية تكتسب أهمية أكبر. في حال المشروع لا مفر منه، يجب اتخاذ تدابير خاصة للحد من التأثير مثل استخدام المخمدات ونسبة الغطاء الأنبوبي على الهيكل في مثل هذه المواقع. تعمل المفاصل على مسارات السكك الحديد ولحام الوصلات على السكك الحديد على تخفيف الضوضاء إلى حد بعيد.

تشمل الخطوات المتخذة لتقليل مستويات الضوضاء على الطرق ما يلي:

أ. التغييرات في تصميم المركبات.

ب. حظر استخدام المركبات القديمة (على سبيل المثال أكثر من ٨ إلى ١٠ سنوات)، خاصة على طرق المدينة.

ت. التغييرات في تصميم الإطارات وأسطح الطرق.

ث. تطوير في عملية التشغيل المروري مثل:

- المسار الحافلات والمركبات الثقيلة بعيدا عن المناطق التي يغلب عليها الطابع السكني والمناطق الحساسة.
- حظر أصوات الصفارات في المناطق الحساسة مثل المستشفيات و المدارس.
 - ٣. توفير إشارات المرور المتزامنة على الطرق الشريانية.
- توفير حواجز صوتية مصممة بشكل صحيح على المجسرات داخل المدينة.

هناك جانب آخر اكتسب بعض الأهمية في المناطق الحضرية هو التلوث البصري بسبب البنية التحتية الجديدة مثل المجسرات والسكك الحديدية المرتفعة مع السلاسل الكهربائية العلوية. سيتم طلب الاستشارات المحلية في مثل هذه الحالات، خاصة إذا كان الهيكل يمر عبر مواقع الأعمال، على شاطئ البحر، أو أمام أي تراث أو أبنية مرموقة.

الفصل الخامس نظام النقل-استخدام الأراضي

ه.١ مقدمة (Introduction)

في هذا الفصل تتم مناقشة العلاقة بين النقل واستخدام الأراضي بإيجاز. بصورة عامة أي قطعة أرض ذات تصنيف معين من استخدام الأراضي تنتج عددا معينا من الرحلات. تفرض هذه الرحلات الحاجة إلى مرافق النقل من أجل تلبية الطلب على الرحلات. في المقابل، توفر مرافق النقل الجديدة أو المحسنة إمكانية وصول أفضل. بطبيعة الحال، يزداد الطلب على تطوير هذه الأرض بسبب تحسين إمكانية الوصول إليها، مما يؤدي إلى زيادة قيمتها. ثم يؤدي إلى تغير استخدام الأراضي الأصلي (عادة إلى كثافة أعلى)، مما يظهر قيمة الأراضي وهكذا تستمر الدورة. مع أن هذا وصف مبسط لدورة استخدام الأراضي- النقل، فإنه يمثل الطبيعة التفاعلية لهذين المكونين.

لسوء الحظ، كثيرا ما ينظر إلى قرارات النقل وتنمية الأراضي على أنها قضايا منفصلة بشكل واضح في التحليل والتخطيط والتصميم والتقييم. في هذا الفصل، نتعامل مع تفاعل استخدام الأراضي- النقل بواسطة فحص مكونات النظام الحضري ثم التدقيق في معايير قياس الهيكل الحضري. ثم تتم دراسة بعض النظريات المختارة المرتبطة باستخدام الأراضي، تليها مزيد من المناقشات حول القضايا الأكثر تعقيدا لاستخدام الأراضي والنقل فيما يتعلق بالسكان والإسكان.

٥. ٢ مكونات النظام الحضري (Urban System Components)

في مجتمع ديمقراطي مثل الولايات المتحدة، يستخدم مالك الأرض لأي أغراض يراها مناسبة. مع تطور المجتمع، تم وضع قيود على هذا الاستخدام، خاصة إذا كان هذا الاستخدام يؤثر سلب على الممتلكات المجاورة. إن هذه القيود، في الواقع، حافظت على حقوق الآخرين ضد الآثار الضارة. مع تزايد الحاجة إلى السكن اللائق والشوارع الآمنة ومرافق الصرف الصحي والمياه المناسبة، رأت السياسات الحكومية والمخاوف الخاصة الحاجة إلى تخطيط وتنظيم استخدام الأراضي. أصل مصطلح استخدام الأراضي يأتي من الاقتصاد الزراعي، حيث يشير إلى قطعة أرض واستخدام اقتصادي مثل للرعي أو زراعة المحاصيل أو التعدين أو البناء. يمكن النظر في سياقين بالنسبة إلى تخطيط استخدام الأراضي. أولا، يشمل جميع أشكال التخطيط، على سبيل المثال، يمكن اعتبار تخطيط النقل من أشكال تخطيط استخدام الأراضي أنسبة من الأراضي

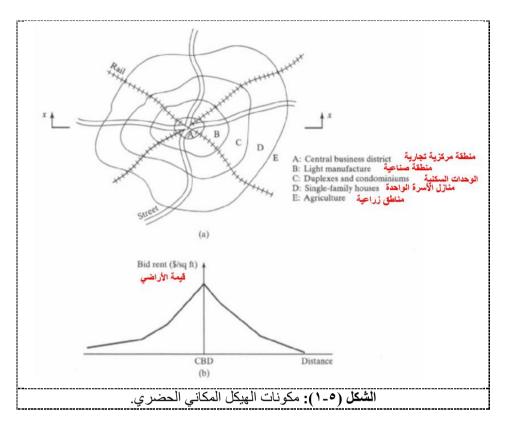
المستخدمة للنقل. ثانيا، إن تخطيط استخدام الأراضي هو تخصص في حد ذاته، وله مجموعة من النظريات والممارسات الخاصة به. سيتم شرح بعض هذه النظريات في هذا الفصل.

مع أن حقيقة أن كل مدينة ومنطقة حضرية لها خصائصها الفردية، إلا أن هناك ترتيبا واضحا أو تماسكا في نمطها العام. إن استخدامات الأراضي والمباني مرتبة وفقا لبعض الخطط. يمكن للمرء أن يسأل السؤال: ما المنطق وراء هذا النظام، مع أن الفوضى؟ في هذا الفصل، نحاول تقديم إجابات على هذا السؤال المفتوح.

لا توجد مجموعة موحدة من المفاهيم أو النظريات حول الشكل الحضري والبنية المكانية، مع أن العديد من العلماء الإقليميين ومخططي المدن قد قدموا نظرياتهم وفرضياتهم ونماذجهم الخاصة حول هذا الموضوع. هناك بالطبع، بعض الصلاحية لكل نهج، لكن لا يحظى أي منها بقبول عالمي. الهدف هنا هو تحديد مجموعة متسقة من المفاهيم والأفكار للمساعدة في فهم النسيج الحضري.

من المفيد اعتبار المدينة (أو المنطقة الحضرية) كنظام. هناك عدد من العناصر المجتمعة أو المكونات ذات الصلة، تشكل نظام المدينة. يحدد الجدول رقم (٥-١) سلسلة من مكونات النظام والعناصر المقابلة لها، داخل نسيج المدينة، التي تم تعريفها على أنها نظام مكاني. يمكن وصف خصائص كل من هذه المكونات بتفصيل كبير، ولكن يكفي هنا تقديم بعض الأمثلة. يمكن اعتبار نواة المدينة كموقع للتسوية الأولية، التي تتطور بمرور الوقت، كمنطقة مركزية تجارية تسمى منطقة الأعمال المركزية (CBD). مع نمو المدينة وانتشارها، قد يميل تأثير المنطقة المركزية التجارية إلى الانخفاض حيث تبدأ المراكز الفرعية البارزة في التطور.

إن المدن لديها مساحات محددة مع حدود محددة في وقت معين. أظهرت كل مدينة أنواع معينة من السلوك. إن هذا السلوك، في شكل نمو، تغيير، أو الاضمحلال، يخضع لمجموعة مهيمنة من الآليات التي تكمن وراء شكله وتحديد نمط التغيير الذي من المحتمل أن يحدث. تتمتع المدن أيضا ببيئة خارجية، التي قد تكون المناطق النائية الإقليمية أو الاقتصاد الإقليمي أو مجموعة من المجالات السياسية أو الاقتصادية أو الثقافية التي تعد المدينة جزءا لا يتجزأ منها. إضافة، هناك تسلسل تاريخي للتطوير أو مسار زمني متصل بالمدينة، مثل دورات البناء أو بناء الطرق السريعة أو أنظمة السكك الحديد. توفر طبقات التنمية هذه ما يمكن أن نسميه شخصية المدينة.


الجدول رقم (٥-١): مكونات النظام الحضري في البنية المكانية.

العنصر المقابل في البنية الحضرية المكانية	مكونات النظام
١. المستوطنة الأولية (التقاء نهرين، أو	١. النواة: نقطة أصل النظام ومكان التحكم
ميناء) ومنطقة الأعمال المركزية	
٢. الفئات الاجتماعية واستخدامات الأراضي	٢. العناصر: الأجزاء، الوحدات، التي تشكل
والأنشطة والتفاعلات والمؤسسات	عناصر النظام
٣. النطاق الجغرافي وحدود المنطقة	٣. المساحة الهندسية وحدود النظام
الحضرية	
٤ المنطق أو المبادئ الأساسية للبنية	٤ المبادئ التنظيمية: ما الذي يربط النظام
الحضرية (مثل سوق الأراضي) ومحددات	معًا ويوزع الأنشطة على المناطق، وما هي
النمو	الطاقة التي تحرك النظام
٥. مصادر وأنواع المحددات الخارجية للبنية	٥. البيئة: السياق الخارجي الذي يؤثر على
الحضرية	ذلك النظام 7. السلوك: كيف يتصرف النظام ويتغير
٦. طريقة عمل المدينة: أنماط نشاطها وأداء	٦. السلوك: كيف يتصرف النظام ويتغير
النمو	بمرور الوقت: أفعاله الروتينية وغير
	الروتينية
٧. تسلسل التطوير، الملف التاريخي لدورات	٧. المسار الزمني: اتجاه التطور والتغيير
البناء وعصور النقل	

ه. مفاهیم وتعاریف (Concepts and Definitions)

يتم توفير مجموعة من التعريفات البسيطة والمفاهيم الأساسية لفهم الشكل والبنية الحضرية، مع تذكر أنه في مواضيع متعددة التخصصات مثل هذه، يكون كل شيء مرتبط بكل شيء آخر.

الشكل الحضري (Urban Form): هو النمط المكاني أو الترتيب للعناصر الفردية مثل المباني والشوارع والمتنزهات وإستخدامات الأراضي الأخرى (تسمى مجتمعة البيئة المبنية)، وكذلك الفئات الإجتماعية والأنشطة الإقتصادية والمؤسسات العامة، داخل المنطقة الحضرية، يتم التعرف عليها على أنها الشكل الحضري. الشكل رقم (٥-١-أ) يوضح إستخدامات الأراضي.

التفاعل الحضري (Urban Interaction): هي مجموعة من العلاقات المتبادلة والروابط والتدفقات التي تحدث لدمج وربط نمط وسلوك الاستخدامات الفردية للأراضي والمجموعات والأنشطة في الأنظمة العامة والفرعية. واحدة من أهم الأنظمة الفرعية المتكاملة هي شبكة الطرق السريعة أو الشوارع. يظهر الشكل رقم (٥-١- أ) مجموعة من الشوارع والممرات التي تربط بين استخدامات الأراضي المختلفة.

الهيكل المكاني الحضري (Urban Spatial Structure): يجمع هذا الهيكل بين الشكل الحضري بواسطة التفاعل الحضري مع مجموعة من القواعد التنظيمية في نظام المدينة. يوضح الشكل (١-٥- ب) مثالا على آلية تنظيم على مستوى النظام، مثل الإيجار التنافسي لمواقع مختلفة داخل المنطقة الحضرية. تنتج هذه الألية ترتيبا للأنشطة والفعاليات من حيث متطلبات الموقع والإيجار الذي يمكن لكل شخص دفعه. ومن آليات التنظيم الأخرى عمل الحكومة والمؤسسات العامة والمعايير المقبولة أو السلوك الاجتماعي.

الخطة الشاملة (Comprehensive Plan): وهي الذي يشار إليها أحيانا باسم الخطة الرئيسة أو الخطة العامة. هذه الخطة هي بيان رسمي لسياسات الوحدة الجغرافية

(المدينة أو المنطقة) والنوايا المتعلقة بالتنمية في السنوات المقبلة. تضع إطارا لتطوير المنطقة الجغرافية وتتضمن توصيات حول ماذا وأين ومتى، ولا سيما لماذا تم إجراء بعض التطورات فيما يتعلق بالإسكان والصرف الصحي والمياه والنقل وما إلى ذلك. وتتضمن خطة استخدام الأراضي، التي تشكل جزءا أساسيا من الخطة الشاملة، توثيقا للتحليل الذي يتم إجراؤه الذي يؤدي إلى تحديد أفضل تطورا تنمويا في المستقبل. إن خطة النقل هي أيضا جزء من هذه الخطة الشاملة.

المبادئ التوجيهية أو الإرشادات (Guidelines): هي مجموعة من المبادئ التوجيهية للتنمية تقوم مقام بديل موصى به في خطة استخدام الأراضي. يمكن إعطاء المبادئ التوجيهية أهمية كأسلوب التنفيذ بواسطة وضعها في التشريعات.

التشريع (Legislation): يمكن تحويل بعض التوصيات الواردة في خطة استخدام الأراضي إلى مشروعات قوانين يمكن تقديمها لاحقا "إلى الهيئة التشريعية لإمكانية سنها لتصبح قانونا".

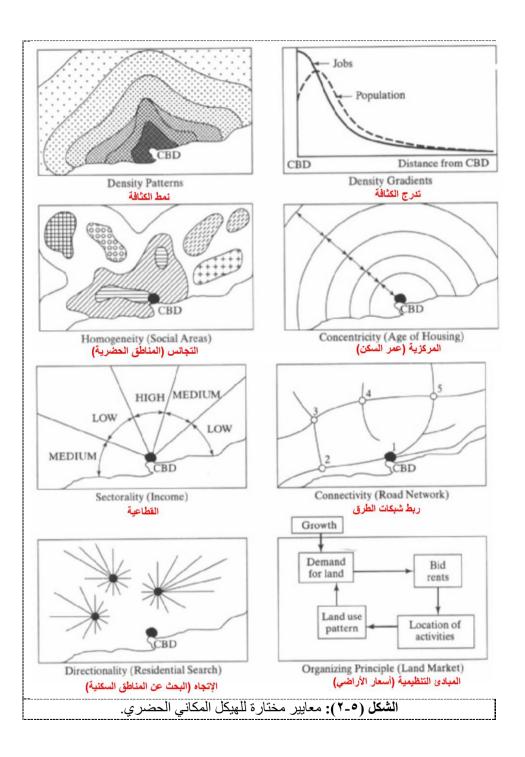
الترميز (Codes): الترميز للمنازل والبناء هي تقنيات تنفيذ مهمة لإدارة استخدام الأراضي. إنها تضمن لجودة النمو المجتمع بواسطة وضع معايير معينة. يتم استخدام الرموز بشكل شائع على مستوى البلديات المحلية.

تقسيم النطاقات (Zoning): إنه أقدم وسيلة قانونية وأكثرها استخداما لتنفيذ خطط استخدام الأراضي المحلية. إنها في الأساس وسيلة لضمان توافق استخدامات الأراضي في وحدة جغرافية فيما يتعلق ببعضها البعض. يسمح بالتحكم في الكثافات في كل فئة من فئات تقسيم النطاقات، مثل الأسرة الواحدة، والشقق، والمكاتب، والتجارية، وما إلى ذلك، بهدف توفير مرافق كافية (الشوارع، والمياه، والصرف الصحي، والمدارس) لهذه الفئات. يساعد تقسيم المناطق في الحفاظ على المناطق الحساسة بيئيا وحمايتها.

لوائح الضواحي (Subdivision regulation): تكمل هذه اللوائح قانون تقسيم النطاقات المحلى ولكن لا يمكن أن تحل محلها. تتحكم لوائح التقسيم الفرعي في التطوير والتغيير الذي يحدث داخل المجتمع وتشجع الخدمات المحلية الفعالة والمرغوبة.

البنية التحتية (Infrastructure): يشار إلى جميع مرافق دعم الحياة للوحدة الجغرافية باسم البنية التحتية. وتتكون من كل تلك العناصر الأساسية التي تجعل المنطقة الحضرية تعمل وهي: مرافق النقل، ومرافق الصرف الصحي والمياه، والطرق السريعة، والإسكان، والموانئ، وخطوط الأنابيب، وما إلى ذلك.

ه.٤ معايير القياس ومقارنة الهيكل الحضري Criteria for Measuring and Comparing Urban Structure)


من المفيد أن تتوفر مجموعة من المعايير التي من شأنها أن تساعد في قياس ومقارنة الشكل الحضري والبنية المكانية. تجمع هذه المجموعة من المعايير مفاهيم متنوعة لأغراض التقييم. ويقدم الجدول رقم (٥-٢) قائمة تضم ٢٠ معيارا "مجمعة في أربعة أقسام. إن معظم المعايير لا تحتاج إلى شرح في كل من الفحوى والتطبيق. القسم الأول يشير إلى اختلاف الهيكل الداخلي للمناطق الحضرية في حالة كون البنية، ونظام الشوارع والمنشأ الصناعي من أعمار مختلفة وتم بناؤها في ظل سياسات وتكنولوجيا وظروف اقتصادية مختلفة. تتكون المجموعة الثانية من المعايير من المؤشرات الأكثر تقليدية والمعروفة على نطاق واسع. على سبيل المثال، المدن ذات السكان المتشابهين إلى حد ما والموجودة في مواقع طبوغرافية مختلفة ستنتج كلا منها شكل حضري مختلف، حتى نظام النقل الخاص بها قد مختلف

تتعلق المجموعة الثالثة من المعايير بمؤشرات النمط الحضري الذي يمكن قياسها بسهولة. توفر هذه المؤشرات مجتمعة صورة شاملة نسبيا "لهندسة المدينة، ولكن لا يعرف سوى القليل جدا" عن تشغيل أو سلوك المدينة نفسها. الشكل رقم (-7) يصور معايير الهيكل المكاني الحضري لكثافة المدينة النموذجية، والتجانس، والتركيز، والقطاعية، والاتصال، والاتجاه.

جدول (٥-٢): معابير الهيكل المكاني الحضري.

	٠.٠ ٠.٠	1 / 1
الوصف والأمثلة	المعيار	المستوى
الوقت ومرحلة التنمية	الوقت	السياق
النمط السائد ونوع الإنتاج (مثل مركز الخدمة	الخصائص الوظيفية	
ومدينة التعدين)		
البيئة الإجتماعية والإقتصادية والثقافية التي هي	البيئة الخارجية	
جزء لا يتجزأ من المدينة		
الموقع داخل النظام الحضري الأكبر (مثل التباين	الموقع النسبي	
بين الأطراف الأساسية)		
الحجم: مساحة المنطقة، السكان، القاعدة	القياس	الشكل العيني
الإقتصادية، الدخل، إلخ.		
الشكل الجغرافي للمنطقة	الشكل	
المناظر الطبيعية الذي بنيت عليه المدينة	الموقع والقاعدة	
·	الطبو غرافية	
نوع ومكونات نظام النقل	شبكة النقل	
متوسط كثافة التنمية، وشكل تدرجات الكثافة (مثل	الكثافة	الشكل والوظيفة
السكان)		الداخلية

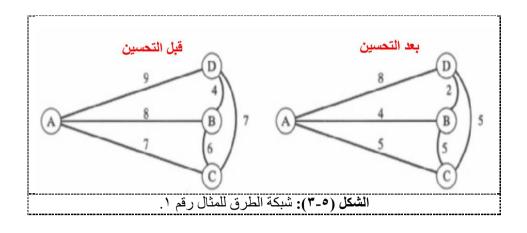
درجة الإختلاط (أو الفصل) بين المستخدمين	التجانس	
والأنشطة والفئات الإجتماعية		
درجة تنظيم المستخدمين، والأنشطة، إلخ، حسب	المركزية	
وتبعا" الى مركز المدينة.		
درجة تنظيم المستخدمين، الأنشطة، إلخ. حيث يتم	القطاعية	
تنظيمها قطاعيا تبعا" الى مركز المدينة.		
الدرجة التي ترتبط بها العقد أو المناطق الفرعية	الإتصالية	
في المدينة بشبكات النقل والتفاعل الاجتماعي وما		
إلى ذلك.		
درجة التوجه الإهليلجي في أنماط التفاعل، على	الإتجاهية	
سبيل المثال، الهجرة السكانية.		
درجة التطابق بين الوظيفة والشكل.	المطابقة	
الدرجة التي يمكن بها إستخدام الأشكال الحضرية	الإستبدال	
المختلفة (مثل مناطق البناء والهيئات العامة) التي		
تم تطويرها لوظيفة واحدة (إستبدالها) بوظيفة		
أخرى.		
الألية الأساسية للفرز المكاني والتكامل.	المبادئ التنظيمية	التنظيم والسلوك
مدى التغذية المرتدة؛ حساسية الشكل للتغيير.	الخصائص المعرفية	
الوسائل الداخلية للرصد والرقابة (مثل تقسيم	الأليات التنظيمية	
المناطق، وضوابط البناء، والقيود المالية).		
الدرجة التي يتطور بها الهيكل الحضري نحو	توجيه الهدف	
أهداف مسبقة.		

ه. ه بعض النظريات والموضوعات المختارة Some Selected Theories) and Topics)

تُهتم أنظرية التخطيط الحضري بتحديد وفهم محتويات وممارسات وعمليات التخطيط. ترتبط النظرية بالممارسة والعكس صحيح. بالنسبة للمخططين، يعد هذا الارتباط أمرا حيويا لأن التخطيط على عكس العلوم هو منظور (أو معياري)، وليس نشاطا وصفيا ". لا يتمثل هدف المخطط في وصف المدينة ومكوناتها فحسب، بل اقتراح طرق يمكن بواسطة تغيير المدينة أيضا، والتحسين للأفضل.

ه ، ه ، ۱ الوصولية (Accessibility)

المفهوم الأساسي الذي تقوم عليه العلاقة بين استخدام الأراضي والنقل هو إمكانية الوصول. تشير إمكانية الوصول إلى سهولة التنقل بين الأماكن. تزداد إمكانية الوصول سواء من حيث الوقت أو المال عندما تصبح الحركة أقل تكلفة. ويزداد الميل للتفاعل مع انخفاض تكلفة الحركة.


مثال رقم ١

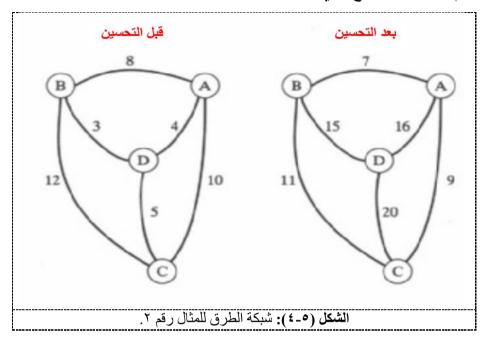
تمثل كلّ عقدة (أ، ب، ج، د) مركز فعاليات، ويمثل كل رابط (أ ب، ب ج) زمن الرحلة بالدقائق كما هو موضح في الشكل رقم ($^{-}$). تم تنفيذ تحسينات على النقل على كل رابط بحيث أدى إلى تقليل زمن الرحلة كما موضح القيم بين القوسين في الجدول أدناه. كيف تؤثر تحسينات النقل على مراكز الفعاليات (استخدام الأراضى)؟

То	Nodes				Σ	Change
From	A	В	C	D		
A	0(0)	6(4)	7(6)	9(8)	22 (18)	-18%
В	6(4)	0(0)	6(5)	4(2)	16 (11)	-31%
С	7(6)	6(5)	0(0)	7(5)	20 (16)	-20%
D	9(8)	4(2)	7(5)	0(0)	20 (15)	-25%

الحل:

توضيح المصفوفة زمن الرحلة الحالي والمحسن. إن مجاميع المصفوفة هي مقاييس إمكانية الوصول لكل عقدة. بطبيعة الحال، إن زمن الرحلة المنخفض يعني إمكانية وصول أكبر. في جميع الحالات، هناك انخفاض في أزمنة الرحلات بعد التحسين (14 %، 14 %، 15 %)، كما هو واضح أن مركز الفعاليات 15 هو المستفيد أكثر يليه مركز الفعاليات 15 %، و 15

مثال رقم ٢


يتم توصيل وسط المدينة (D) عن طريق الشوارع ألشرايينية بمراكز الفعاليات والمناطق السكنية A، C ، C

То	Ac	ctivities Cen	ter	Downtown	Σ	Change
From	A	В	C	D		
A	0(0)	8(7)	10(9)	4(16)	22 (32)	45%
В	8(7)	0(0)	12(11)	3(15)	23 (33)	43%
С	10(9)	12(11)	0(0)	5(20)	27 (40)	48%
D	4(16)	3(15)	5(20)	0(0)	12 (51)	3.25%

لحل:

ومن المرجح أن تستفيد مراكز الفعاليات A و C بصورة متساوية، لأن الفرق بين النسب 5 و 5 و 5 و 5 يبدو ليست كبيرا بما فيه الكفاية. ومن المؤكد أن وسط المدينة سوف يتدهور بسرعة. وتتمثل السبل الممكنة التي يمكن بواسطة تقليص

زمن الرحلة هي تحسين انسيابية حركة المرور على الشوارع الشريانية أو تنفيذ نظام الحافلات السريع الذي من شأنه أن يقلل زمن الرحلة إلى مراكز الفعاليات.

إن إمكانية الوصول الشخصية يمكن الحصول عليها عن طريق حساب عدد مواقع الأنشطة (وتسمى أيضا الفرص) المتاحة على مسافة معينة من منزل الشخص وحساب هذا الرقم بواسطة المسافات المتداخلة. يمكن حساب مقاييس إمكانية الوصول لأنواع معينة من الفرص، مثل التسوق أو العمل. يتم إعطاء أحد هذه المقاييس كما يلي:

معادلة (۱-۵) معادلة
$$A_i = \sum_j O_j d_{ij}^{-b}$$

حيث إن:

 A_i : الوصولية للشخص A_i

من مسكن أو منزل الشخص. O_i : عدد الفرص المتاحة لمسافة d

بعض المقاييس للفصل بين j_{ij} (مثلا زمن الرحلة، كلفة الرحلة، او ببساطة المسافة). d_{ij} عدد ثابت

إن مؤشر الوصولية هو مقياس للوجهات المحتملة المتاحة للشخص ومدى سهولة الوصول إليها. يمكن قياس إمكانية الوصول إلى مكان ما فيما يتعلق بأماكن أخرى في المدينة بطريقة مماثلة، وعليه إن A هي إمكانية الوصول إلى المنطقة A.

مثال رقم $\frac{m}{n}$ مدینهٔ صغیرهٔ بها ثلاث مناطق سکنیهٔ، R_{3} , R_{2} , R_{1} بها ۲۰۰۰ و ۲۰۰۰ و ۲۰۰۰ عامل على التوالي، ومنطقتان للتوظيف والعمل E₂₉E₁ مع ٢٠٠٠ و ٤٠٠٠ فرصة عمل. إن زمن الرحلة بين النطاقات بالدقائق في الجدول أدناه. إحسب إمكانية الوصول النسبية الفعلية للمناطق السكنية بإفتر اض أن العدد الثابت b , • = b

d O	1	2	R_o
1	10	12	1500
2	7	9	2000
3	6	8	2500
E_d	2000	4000	6000

$$A_i = \sum_{d} \frac{|\Delta t|}{I_{od}^b}$$

$$d = 1,2$$
 $o = 1,2,3$

.d عدد فرص العمل المتاحة في نطاق E_d

معادلة زمن الرحلة. I_{od}^{b}

$$A_1 = \frac{2000}{10} + \frac{4000}{12} = 200 + 333 = 533$$

$$A_2 = \frac{2000}{7} + \frac{4000}{9} = 286 + 444 = 730$$

$$A_3 = \frac{2000}{6} + \frac{4000}{8} = 333 + 500 = 833$$

و الوصولية النسبية كالتالي:

$$A_1 = \frac{533}{2096} = 0.25$$

$$A_2 = \frac{730}{2096} = 0.35$$

$$A_3 = \frac{833}{2096} = 0.40$$

Total = 1.00

هنا يتم تجميع إمكانية الوصول لكل شخص يعيش في منطقة معينة ولا توجد طريقة للتمبيز بين مجموعات مختلفة من الأشخاص داخل المنطقة، مثل أولئك الذين لديهم مركبات وأولئك الذين ليس لديهم مركبات، على سبيل المثال، ١٥٠٠ عامل يعيشون E_1 في المنطقة R_1 يفترض أنهم جميعا يمتلكون مركبات ويصلون إلى المنطقة خُلال ١٠ دقائق. تعتمد قدرة الشخص على الوصول إلى مواقع مختلفة في المدينة جزئيا فقط على الموقع النسبي لتلك الأماكن، كما تعتمد على حركة التنقل (القدرة على الانتقال إلى مواقع الفعاليات والأنشطة) ونظام النقل الموجود.

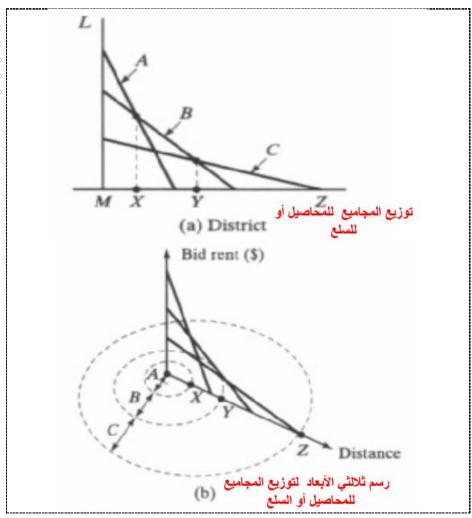
ه ، ه ، ۲ نظرية الموقع (Location Theory)

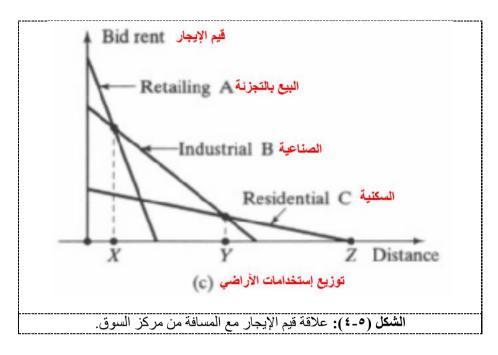
تم تطوير نظريات موقع الفعاليات، ولا سيما السكنية في عام ١٩٦٠ من قبل العديد من العلماء الإقليميين. بواسطة رسم أمثلة من اقتصاديات الأراضي الزراعية، من الممكن ربط الاستخدام المحدد لقطعة من الأرض بصفة دالة لبعدها عن السوق، بافتراض وجود سوق واحد يقع في وسط حقل عديم الملامح. يعتمد الاستخدام المحدد للأرض في أي مكان على إيجار الأرض (L)، وفقا للمعادلة أدناه:

$$(^{r-o})$$
 معادلة $L = E(p-a) - Efk$

حيث إن: F: العائد لكل وحدة من الأرض.

p: سعر السوق لكل وحدة سلعة في الموقع.


a: تكلفة الإنتاج لكل وحدة سلعة في الموقع.


f: تكلفة النقل لكل وحدة من المسافة.

k: المسافة إلى السوق.

لاحظ أنه بالنسبة لسلعة معينة، k هو المتغير الوحيد و Efk هي تكلفة النقل الإجمالية تزداد مع المسافة، E(p-a) هو ثابت لمحصول معين. على مسافة معينة E(p-a) تساوي Efk وتعرف هذه المسافة باسم هامش الإيجار الصفري، حيث لن يكون من المجدي إقتصاديا" زراعة محصول معين على أي مسافة أبعد.

يوضح الشكل رقم ($^{-2}$ - أ) منحنيات الإنتاج والإيجار الناتجة لثلاث سلع افتراضية. سيختار المزارعون بشكل طبيعي المحصول (أو السلعة) الذي تكون ربحيته هي الأعلى بالنسبة لموقعهم. تتقاطع منحنيات الإيجار للمحاصيل A و B على مسافة x من السوق M، مما يعني أنه ستتم زراعته بين x و y و z، على التوالي. يوضح الشكل رقم ($^{-2}$ - ب) الرسم في (ثلاثة) أبعاد.

استخدم Alonso نظرية (Thunes) في السياق الحضري، بواسطة إنشاء سلسلة من مناطق استخدام الأراضي من تقاطع منحنيات الإنتاج والإيجار المختلفة. بافتراض أن المدينة بها منطقة تجارية مركزية واحدة حيث تتوفر جميع فرص العمل وأن جميع تكاليف النقل مرتبطة خطيا بالمسافة والبعد عن المنطقة التجارية المركزية، يمكن رسم منحنيات إيجار ونمط استخدام الأراضي، على سبيل المثال، ثلاثة أنواع من استخدام الأراضي الحضرية: البيع بالتجزئة، والصناعية، والسكنية، كما هو موضح في الشكل رقم (٥-٤- ج).

لاحظ أن الاستخدام السكني يحتوي على أقل من المنحنيات الثلاثة، حيث تتخذ الأسر الفردية خيارات تزيد من رضاها الفردي. على سبيل المثال، الفقراء، مع القليل من الدخل المتاح، تستهلك كميات صغيرة من الفضاء بالقرب من وسط المدينة، حيث إن تكاليف النقل تكون منخفضة. على العكس من ذلك، فإن الأغنياء، الذين لديهم دخل أكبر بكثير يدفعون نفس الإيجار الذي يدفعه الفقراء بواسطة العيش بالقرب من حدود المدينة، لكنهم يستطيعون دفع أجر نقل أعلى للتنقل لمسافات أطول إلى العمل.

 $\frac{\Delta n}{n}$ مثال رقم $\frac{n}{n}$ مدینة لها سوق مرکزی مفرد ترید إنتاج أربعة محاصیل مختلفة، من A خلال D ، والتي تعطي خصائصها بالدو لار:

	A	В	С	D
السعر في الموقع لكل وحدة من المحاصيل	120	100	80	50
تكلفة الإنتاج لكل وحدة	20	25	10	10
صافي سعر الوحدة في الموقع	100	75	70	40
تكلفة النقل لكل وحدة	20	10	7	3.33

ارسم النتائج، وحدد المحصول الذي يجب إنتاجه عند المسافة المثلى من وسط المدينة والتوزيع. ما هي الآثار المترتبة على هذه النظرية للنقل وتخطيط المدن في سباق الابجار ، تكاليف السكن، و المسافة من و سط المدينة؟

الحل: حسب المعادلة رقم (٣-٥):
$$L = E(p-a) - Efk$$

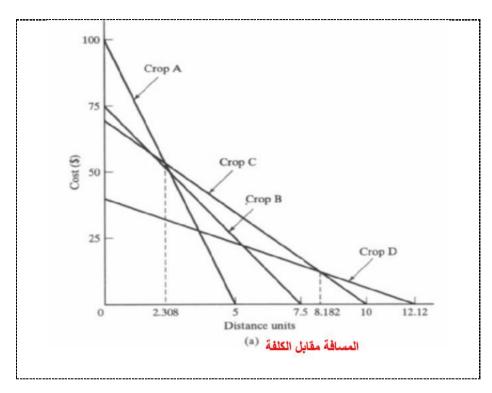
$$L = (p - a) - fk$$

Crop A:
$$L = (p - a) - fk$$

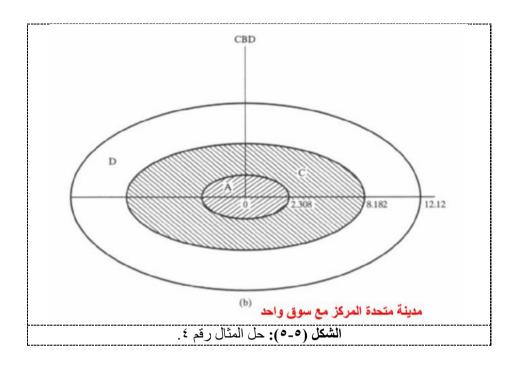
 $L = (100 - 20) - 20k$
 $= 100 - 20k$

Crop B:
$$L = (100 - 25) - 10k$$

= $75 - 10k$


$$Crop\ C: L = (80 - 10) - 7k$$

= $70 - 7k$


Crop
$$D: L = (50 - 10) - 3.33k$$

= $40 - 3.33k$

تمثل المعادلات الأربعة أعلاه المحاصيل B ، C ، B ، A ومساواتها تعطى مسافات ٢,٣٠٨,٨,١٨٢، و ١٢,١٢ ميلا تمثل نصف القطر من وسط المدينة التي يكون أكثر ربح لزراعة المحاصيل B ،C ،B ،A على التوالي. لاحظ أن المحصول B من الواضح أنه ليس مربحا للنمو. يوضح الشكل رقم (٥-٥- ب) الحلقات متحدة المركز حيث تزرع المحاصيل. ارجع إلى الشكل رقم (٥-٥- أ)، حيث يمثل المحور

العمودي الربح ويمثل المحور الأفقي المسافة. المسافة من السوق عند الربح = صفر كما هو موضح أدناه:

A	В	С	D
$\frac{100}{100} = 5$	$\frac{75}{-} = 7.5$	$\frac{70}{1} = 10$	$\frac{40}{}$ = 12.12
20	10 - 7.3	7	3.33

يوضح الشكل رقم (٥-٥) من وجهة نظر اقتصادية:

- 1. يجب زراعة المحصول A من وسط المدينة إلى مسافة 7,70 وحدة مسافة من السوق.
- ٢. يجب زراعة المحصول D من حيث توقف المحصول A (7,70, وحدة المسافة) إلى ما يصل 4,100, وحدة المسافة من السوق.
- ٣. لا ينبغي زراعة المحصول C على الإطلاق، لأنه لن يكون من المربح الفعل من (ذلك).

يوضح المثال رقم ٤ إن تكلفة النقل هي عامل رئيس: فكلما أبتعد المحصول عن السوق، زاد ما يتطلبه الأمر لإيصال المنتج إلى السوق. وفقا لنظرية الإيجار، يتناسب إيجار الأرض أو تكلفتها عكسيا مع مسافة من المنطقة المركزية التجارية. بواسطة الجمع بين الظاهرتين السابقتين، يمكن رسم المواقع التي يمكن زراعة المحاصيل فيها بشكل اقتصادي.

ه ، ه ، ۳ تأثير النطاقات(Effect of Zoning)

تتفاعل جميع الأنشطة والأشخاص والمواقع بطريقة يرغب الجميع في زيادة مواقعهم إلى أقصى حد. الناس لديهم أسباب للعيش حيث يرغبون. أن الشركات

والصناعات لديها أيضا تفضيلات الموقع. وهذه التفضيلات الموضعية تؤدي إلى أنماط التمركز. ينظم مخططو استخدام الأراضي توافق أنماط استخدام الأراضي بواسطة تقسيم النطاقات والقوانين الأخرى.

لتوضيح أعلاه، لنفترض أن مدينة صغيرة بها عدة قطع أرض، كل منها مملوك لشخص حر في البيع لمن يدفع أعلى سعرا. إن الناس قادرة على شراء هذه الأراضي في السوق المفتوحة ودفع الثمن. مع ذلك، قد يؤدي هذا البيع في السوق الحرة إلى استخدام غير متوافق للأراضي. على سبيل المثال، يمكن بيع إحدى قطع الأرض لشخص يريد إنشاء مصنع صغير قد يكون مجاورا لمجمع سكني. ولمنع أي نوع من الإزعاج، تشرع معظم المجتمعات قوانين تقسيم النطاقات لتنظيم استخدام الأراضي.

ه ، ه ، ٤ قيمة الأراضي (Land Value)

يمكن تمثيل نموذج بسيط لقيمة الأرض بدالة خطية، على النحو التالي:

رد (٤-٥) معادلة
$$LV_i = a - bD_i$$

حيث إن:

تيمة الأرض. LV_i

أ. المسافة من المنطقة التجارية المركزية. \dot{D}

a, b: ثوابت

يمكن تمثيل نموذج أكثر تفصيلا إلى حد ما بدالة القوة Power، على النحو التالي:

$$(\circ - \circ)$$
 معادلة $LV_i = aD_i^{-b}$

حيث تنخفض قيم الأرض بمعدل تناقضي . يمكن تحديد المجهول في كلا النموذجين بواسطة طريقة المربعات الصغرى Least squares.

يمكن أن تكون نموذج قيمة الأرض للمناطق الحضرية معقدة للغاية. على سبيل المثال، يمكن أن يكون مفهوم النموذج لمدينة كبيرة تقع بالقرب من المحيط أو الشاطئ مثل المعادلة التالية:

$$(- -)$$
 معادلة $LV_i = a - b_1 C_i - b_2 M_i - b_3 E_i - b_4 S_i$

حيث إن:

يمة الأرض في الموقع. LV_i

المسافة من المنطقة التجارية المركزية. C_i

M; المسافة من المحيط أو الشاطئ.

المسافة من أقرب محطة مترو أو نقل سريع. E_i : المسافة من أقرب مركز للتسوق. S_i :

يمكن إستخدام نماذج أخرى مشابهة للنموذج الموصوف بمتغيرات مثل إمكانية الوصول ووسائل الراحة والخصائص الطبوغرافية.

ه ٦٠ إستخدام الأراضي والنقل (Lane Use and Transportation)

إن حركة الأشخاص والبضائع في المدينة، التي يشار إليها باسم تدفق حركة المرور، هي النتيجة المشتركة لنشاط الأرض (الطلب) والسعة الاستيعابية لنظام النقل على سد الحاجة للتدفق المروري هذا يسمى (التوريد). هناك تفاعل مباشر بين نوع وكثافة استخدام الأراضي وتوريد مرافق النقل. أحد الأهداف الرئيسية للتخطيط واستخدام الأراضي ونظام النقل هو ضمان وجود توازن فعال بين نشاط استخدام الأراضي ونظام النقل هو ضمان وجود توازن فعال بين نشاط استخدام الأراضي والطلب على النقل ينظر إلى العلاقات بين النقل وإستخدام الأراضي في ثلاثة سياقات مختلفة:

- 1. العلاقات على المستوى العيني، التي لها أهمية طويلة المدى عد عموما جزءا من عملية التخطيط.
- العلاقات على المستوى المجهري، التي لها أهمية قصيرة وطويلة المدى وتعتبر عموما قضايا التصميم الحضري (غالبا على نطاق مواقع معينة من المرافق).
- ٣. العلاقات العملية، التي تتعامل مع الجوانب القانونية والإدارية والمالية والمؤسسية لتنسيق وتطوير الأراضي والنقل.

لقد تغيرت المناطق الحضرية على مر السنين نتيجة للتحول الكبير من العمالة الزراعية إلى العمالة الحضرية. وهي الآن مراكز ذات نفوذ مالي واسع وفرص عمل يخضع تعقيدها وتنوعها لدورات من التغيير تتعلق بالعديد من القوى الاجتماعية والاقتصادية. تتغير خصائصها الفيزيائية بسرعة نتيجة لعلاقات الوقت والمسافة الجديدة التي أنشأها النقل عالي السرعة والاتصالات الإلكترونية منخفضة التكلفة

يعيش عدد أكبر من الناس ونسب أعلى من إجمالي السكان في المناطق الحضرية ولكن بتركيزات أقل كثافة من أي وقت مضى. يثير التشتت الحالي للسكان قضايا جديدة فيما يتعلق بالتأثير طويل الأمد على فعالية النقل. كما تمت مناقشته من قبل، يشكل استخدام الأراضي والنقل حلقة مغلقة.

إمكانات استخدام الأراضي هي مقياس لحجم النشاط الاجتماعي والاقتصادي الذي يحدث في منطقة معينة من الأرض. الخاصية الفريدة لاستخدام الأراضي هي

قابليتها على توليد المرور فمن المناسب ربط إمكانات استخدام الأراضي لقطعة أرض، لها نشاط معين، لتوليد نسبة معينة من حركة المرور بوميا.

يقدم الجدول رقم (٥-٣) أمثلة نمو ذجية لإمكانات استخدام الأراضي. لاحظ أن توليد حركة المرور هو ظاهرة ديناميكية ويمكن تعريف كثافة توليد حركة المرور على أنها دالة للزمان والمكان. عموما، يعنى استخدام الأراضي التوزيع المكاني أو النمط الجغرافي للمدينة: المناطق السكنية، والصناعية، والمناطق التجارية، وتجارة التجزئة، والمساحة المخصصة للأغراض الحكومية والمؤسسية والترفيهية. إذا كانت استخدامات الأرض لمدينة معروفة، فمن الممكن حساب حركة المرور

يوفر توليد الرحلة الربط بين استخدام الأراضي والنقل. عادة ما يتم وصف استخدام الأراضي لأغراض توليد الرحلات من حيث كثافة استخدام الأراضي، وطبيعة أنشطة استخدام الأراضي، والموقع داخل البيئة الحضرية.

جدول رقم (٥-٣): أمثلة عن إمكانيات استخدام الأراضي.

المقياس	نوع إستخدامات الأراضي
السكان، الوحدات السكنية	السكني
المساحة،عدد العمال	الصناعية
المساحة، عدد العمال	المؤسسات أو المكاتب
السعة (عدد المقاعد)	المسارح
عدد الغرف، المساحة الأرضية	الفنادق
مساحة البيع بالتجزئة، العمال	مراكز التسوق

مثال رقم ٥ تم تدوين بيانات رحلات التسوق في أجزاء مختلفة من المدينة كما هو موضح أدناه.

احسب معدلات رحلة التسوق حسب نوع الموقع، وناقش النتائج. نوع الموقع عدد رحلات التسوق النطاق عدد العمال

٧٢	٣٠٠٠	منطقة أعمال مركزية	١
70	1 2	منطقة أعمال مركزية	۲
7	٦.,	مرکز تسوق ۱	٣
17	1 2	مرکز تسوق۲	٤
0.	10	مركز محلي	0
1 2 .	0.	مركز محلي	٦
٣	٨٥	مركز محلي	٧
٣٨٠	1.0	مركز محلي	٨

الحل:

منطقة أعمال مركزية (CBD):

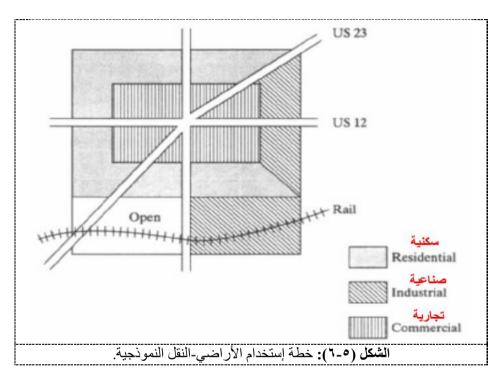
$$\frac{7200 + 12000}{3000 + 1400} = 2.205 \ trips/employee$$

مرکز تسوق (shopping center):

$$\frac{6000 + 1200}{600 + 1400} = 9.0 \text{ shopping trips/employee}$$

مرکز محلی (local center):

$$\frac{50 + 140 + 300 + 380}{15 + 50 + 85 + 105} = 3.41 \text{ shopping trips/employee}$$


رحلات التسوق لكل عامل لمراكز التسوق هي الأعلى، تليها المراكز المحلية والمنطقة التجارية المركزية. لا يجب ربط التحليل بالمناطق ولكن يمكن القيام به على أساس فردي. على سبيل المثال، قد تكون خصائص مركز التسوق ١ مختلفة تماما عن خصائص مركز التسوق ٢. هنا تم تجميع أنواع المواقع، ويمكن أن يخفي هذا التجميع النتائج.

يمكن تمثيل نظام نقل- استخدام الأراضي بمجموعة مكانية من استخدامات الأراضي معززة بشبكة تمثل نظام النقل. يظهر هذا النظام بشكل تخطيطي في الشكل رقم (٥-٦). لاحظ أن مناطق استخدام الأراضي يجب أن تحدد بشكل مثالي منطقة النشاط لاستخدام الأراضي المتجانسة السكنية والتجارية والصناعية وما إلى ذلك. النقل يعتمد على الطلب، أي إن المرء لا يقوم عموما برحلة فقط لغرض القيام برحلة ولكن لغرض محدد هو الذهاب إلى العمل، أو للتسوق، أو للوصول إلى المدرسة، وما إلى ذلك، عموما، يتم إجراء الرحلات لأغراض مربحة. في بعض الأحيان يكون الربح غير ملموس. يتم إنفاق ما بين ١٠ ٪ و ٢٥ ٪ من دخل الشخص على النقل، وربما تبرر العائدات المستمدة من هذا النشاط هذا الإنفاق.

يعد تحليل استخدام الأراضي طريقة ملاءمة لدراسة الأنشطة التي توفر الأساس لتوليد الرحلة لأن أنماط النقل (الطرق وتدفق حركة المرور) تفرضها شبكة النقل وترتيبات استخدام الأراضي. يجب أن يوصى بأن تكون الرحلة حدثا يربط بين أصل أو بداية الرحلة (على سبيل المثال، منزل الفرد) والوجهة للرحلة (على سبيل المثال، مكان عمل الفرد). يتم تنفيذه عن طريق النقل على طريق محدد، له طول معين (بالأميال) ويستغرق وقتا معينا (بالدقائق) للنقل.

يوضح الجدول رقم (٥-٤) مثال على وجهة الرحلة ومعدلات توليد الرحلات حسب نوع إستخدام الأراضي لمنطقة حضرية كبيرة في الغرب الأوسط. لاحظ أن

الأراضي السكنية والصناعية والعامة تولد رحلات بنفس المعدلات تقريبا"، في حين أن الأراضي التجارية تولد رحلات بمعدل أكبر بأربعة أضعاف تقريبا". يوضح الجدول رقم (٥-٥) خصائص رحلات العمل النموذجية لموقعين نموذجيين للعمل في منطقة حضرية. يظهر الأهمية النسبية لكل مكون. يعطي الجدول رقم (٥-٦) متوسط أطوال الرحلات النموذجية لرحلات الأشخاص حسب نوع إستخدام الأراضي.

جدول رقم (٥-٤): وجهة الرحلات وتوزيع الرحلات (نموذج لعينة).

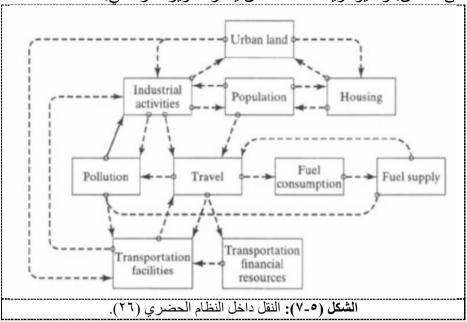
وجهة رحلة	المساحة (ميل	وجهة رحلة	نوع إستخدامات
الشخص (/ ميل	مربع)	الشخص	الأرض
مربع)		(بالملايين)	
٣١٠٠٠	۱۸۰٫٦	٥.٦٠٦	السكني
٣١٦٠٠	75,7	•.9٧٧	الصناعي
00,,	٥٠,٧	٠.٠٨٢	النقل
117	71,1	7.988	التجاري
۳۳۸۰۰	٣٤,١	٠.٢٨٧	أبنية عامة
۲۷۰۰	112,9	۰.٥١٣	فضاءات مفتوحة
77.77	٤١٥,١	1.717	الإجمالي

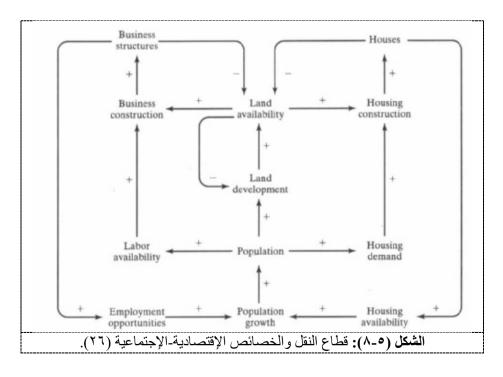
جدول رقم (٥-٥): الخصائص العامة لرحلات العمل في المدينة (نموذج لعينة).

		·	•	-() ()	•
الضواحي	رحلات الضواحي		رحلات من	البند	
			مر		
نقل عام	مركبات	نقل عام	مركبات		
٩	٨	٧	٦	طول الرحلة (ميل)	
10	٣.	١.	۲.	عدل السرعة (ميل/ساعة)	5
٣٦	١٦	٤٢	١٨	من الرحلة (دقيقة)	۲.
۲.	٣	10	٥	من الوصولية والإنتظار (دقيقة)	۲.
٠.٠٢	٠.٦٥	٠.٠٢	٠.٠٧	فة الرحلة (\$/ميل)	Ŋ
1	1	1	١.٠٠	مة الوقت (\$/ساعة)	قي
-	٠.٥٢	-	١.٠٠	فة موقف المركبات (\$/ساعة)	Ż

جدول رقم (٥-٦): متوسط طول الرحلات للأشخاص حسن نوع إستخدام الأراضي.

/ 	<u> </u>
متوسط طول الرحلة (ميل)	إستخدام الأراضي
٤.٣	السكنية
0.1	الصناعية
٣.١	التجارية (البيع بالتجزئة)
٤.٨	التجارية (الخدمات)
0.9	التجارية (البيع بالجملة)
٣.٦	أبنية عامة
٤.٥	الأماكن العامة المفتوحة
٤.٣	كل إستخدامات الأراضي


ه ٧٠ النمو والتدهور الحضري (Urban Growth and Decline)


من الضروري فهم العلاقات السببية المحتملة وردود الفعل والتفاعلات بين مختلف قطاعات المدينة (أو المنطقة الحضرية)، لا سيما عناصر استخدام الأراضي والنقل. النمو الحضري أو التدهور هو نتيجة لهذا التفاعل المعقد. يجب أن ندرك الآن أن النقل من حيث التنمية الاقتصادية هو يعتمد على الطلب وبذلك يعتمد على تنمية قطاعات الاقتصاد الأخرى. يتمثل الهدف الرئيس لتخطيط النقل في توفير التحركات اللازمة للأشخاص والبضائع بأقل تكلفة إجمالية للاقتصاد.

إن الرسم التخطيطي في الشكل رقم (٥-٧) يوضح الترابط بين النظام الحضري. ويظهر أن أي تخصيص مالي لتحسين مرافق النقل في منطقة حضرية يعتمد في نهاية المطاف على نفسه. ويبين الشكل رقم (٥-٧) أيضا أن توافر الأراضي الحضرية سيحد في نهاية المطاف من النمو الحضري.

الشكل رقم (٥-٨) يظهر الإطار المفاهيمي للقطاع الاجتماعي- الاقتصادي. النظر في الحالات التالية: المزيد من الأراضي المتاحة في وسط منطقة الأعمال التجارية،

يزيد الأعمال التجارية والبناء، مما يزيد بدوره من فرص العمل ويؤثر بشكل إيجابي على السكان. وأخيرا زيادة عدد السكان يحفز تطوير الأراضي.

٨٠٥ خصائص التنبؤ بإستخدام الأراضي وخطة إستخدام الأراضي (Characteristics of land-Use Forecasting and the land-Use Plan) عادة ما يتم اقتراح خطط إبدال استخدام الأراضي والنقل وإعدادها للمدينة لأنه عندما يتم فحص عدة خيارات مختلفة يمكن اختيار واعتماد خطة مدينة واقعية. تتمتع مجموعات معينة من أنماط استخدام الأراضي وأنظمة النقل بمزايا كبيرة من حيث الكفاءة. لذا؛ فإن الجمهور وممثليهم قادرون على النظر في البدائل وتحديد المزايا. تعتمد البدائل على مفاهيم شكل الخطة مثل المدينة الشعاعية أو الخطية أو ذات النواة. تتضمن نموذج الخطة هذه السياسات المتعلقة بموقع وكثافة استخدام الأراضي. يتم تطوير وصقل هذه الخطط المفاهيمية بشكل أكبر حتى تصل إلى المرحلة التي يمكن استخدامها فيها لتوزيع المجاميع السكانية والاجتماعية والاقتصادية الإقليمية التي تم الحصول عليها خارجيا عن طريق الإجراءات اليدوية أو الحاسوبية.

ه ۱۰۸۰ تصنیف نماذج إستخدامات الأراضي Classification of Land-Use Models)

يمكن تصنيف نموذجات استخدام الأراضي بطرق عدة من حيث تطورها. المستوى ا، الأقل تطورا، ينطوي على إنشاء أنماط مادية بديلة لتنمية الأراضي وهذا النموذجات لا تتدخل في تنظيم النقل والمرافق الأخرى. عموما، يتم استخدام الطرق الدوية التقليدية لتوزيع النمو في منطقة الدراسة. في النموذجات المستوى ٢، يتم تقديم المفهوم البسيط لعملية التنمية الحضرية للتخصيص المكاني للأسر والعمالة جنبا إلى جنب مع تنظيم النقل وبناء البنية التحتية الأخرى. إن المكونات التحليلية الرئيسة لهذا الإجراء هي تحديد لكل فئة من فئات استخدام الأراضي مجموعة من متطلبات الموقع ومجموعة من متطلبات الموقع ومجموعة من متطلبات المساحة. يتم إصدار هذه الأحكام بواسطة التحليل بناء على المبادئ والمعايير المحددة والمعرفة حسب الظروف المحلية وما يعتبر في مصلحة الجمهور. خطوة أخرى هي إدخال استخدام بعض الصيغ الرياضية، مثل معادلات الانحدار (regression equations).

تستخدم نموذجات المستوى ٣ مفاهيم عملية التطوير بشكل أكثر تطورا، بما في تلك مجموعة واسعة من المواصفات القياسية. يشار إلى النموذجات في هذا المستوى عموما باسم نهج محاكاة السوق. تم تطوير النموذج الأصلي لهذا النظام من النموذجات في أوائل عام ١٩٦٠ من قبل Lowery. تم استخدام الهيكل العام للنموذج Lowery في الدراسات الحضرية الكبيرة في السنوات الأخيرة.

ه ۲۰۸۰ نماذج تطویر إستخدامات الأراضي ۲۰۸۰ نماذج تطویر استخدامات الأراضي Models)

إن تخطيط استخدام الأراضي لمدينة مهمة يكون معقدا. في معظم البلدان الديمقراطية، يتم تخصيص الأراضي بين الاستخدامات البديلة بشكل رئيس في الأسواق الخاصة ذات التنظيم العام إلى حد ما. ينتج هذا تطور المدن بشكل أساسي من قرارات تحديد الموقع من قبل عدد كبير من المطورين والمشترين الخاصين، كل منهم يحاول تعزيز المصالح الشخصية والأنانية. وقد اتبع المخططون تخطيط استخدام الأراضي للتنبؤ بدرجة من الدقة بالتنظيم المكاني للسكان والنشاط الاقتصادي في المنطقة.

تخدم نموذجات استخدام الأراضي غرضين متميزين:

١ التنبؤ بالأنشطة الإجمالية لمنطقة حضرية

٢. تخصيص هذه الأنشطة بين مجموعة محددة سلفا.

تم وصف نموذجين بسيطين لتخصيص إستخدام الأراضي في الأقسام التالية: نموذج density لإمكانية الوصول وطريقة تدرج الكثافة المشبعة saturation gradient

ه ۳۰۸۰ نموذج الوصولية هانسن (Hansen's Accessibility Model)

تم تصميم نموذج هانسن Hansen's للتنبؤ بموقع السكان بناء على فرضية أن التوظيف هو العامل السائد في تحديد الموقع. وإقترح إستخدام مؤشر الوصولية A_{ii} ، حيث:

$$(ext{V-0})$$
 معادلة $A_{ij}=rac{E_j}{d^b_{ij}}$

حيث إن:

.j مؤشر الوصولية للنطاق i تبعا" للنطاق A_{ij}

عجم العمالة الكلي. E_i

 d_{ii} : المسافة بين النطاق d_{ii}

b: أس

إن مؤشر الوصولية الكلى للنطاق [:

$$(\Lambda ext{-}\circ)$$
 معادلة $A_{ij} = \sum_j rac{E_j}{d^b_{ij}}$

كما أن مساحة الأراضي الشاغرة المناسبة والمتاحة للإستخدام السكني هي أيضا عامل إضافي في جذب المزيد من السكان إلى المنطقة المعنية. يشار إلى هذا باسم السعة القابضة (H_i) . وبالتالي، فإن إمكانات تطوير المنطقة (D_i) هي:

$$D_i = A_i H_i$$
معادلة (٥-٥)

ويتم توزيع السكان على المناطق على أساس إمكانات التنمية النسبية $(A_iH_i/\sum A_iH_i)$. إذا كان النمو الإجمالي في عدد السكان في السنة المقبلة هو (G_t) ، والسكان المخصصة للمنطقة (G_t)

$$G_i = G_t rac{A_i H_i}{\sum A_i H_i} = G_t rac{D_i}{\sum D_i}$$
معادلة

مثال رقم ٥ تتميز مدينة صغيرة مكونة من ثلاث نطاقات بالخصائص التالية:

السعة القابضة (فدان)	عدد السكان الإجمالي	النطاق
١	7	١
۲	1	۲
٣٠٠	٣٠٠٠	٣
٦٠٠	4	الإجمالي

إن زمن الرحلة (بالدقائق) معطى في الجدول التالي:

٣	۲	1	الى j
			i من
٨	٦	۲	١
٥	٣	٦	۲
٤	٥	٨	٣

يمكن افتراض الأس ٢ توافق مع مدن أخرى من نفس الحجم. افرض عدد سكان هذه المدينة يصل إلى ٢٠٠٠ بعد ٢٠ سنة، كيف سيتم توزيع السكان حسب المناطق؟ افترض أن إجمالي العمالة في كل منطقة يتناسب مع إجمالي السكان الحاليين في تلك المنطقة.

<u>الحل:</u>

A_i حساب مؤشر الوصولية A_{ij} ثم

$\sum_{i} A_{ij}$	٣	۲	1	النطاق
575	$\frac{3000}{8^2} = 47$	$\frac{1000}{6^2} = 28$	$\frac{2000}{2^2} = 500$	1
287	$\frac{3000}{5^2} = 120$	$\frac{1000}{3^2} = 111$	$\frac{2000}{6^2} = 56$	۲
259	$\frac{3000}{4^2} = 188$	$\frac{1000}{5^2} = 40$	$\frac{2000}{8^2} = 31$	٣

$: H_i \rightarrow A_i$ حاصل ضرب

$D_i = A_i H_i$	H_i	A_i	النطاق
57500	100	575	1
57400	200	287	۲
77700	300	259	٣
192600			الإجمالي

إحسب التطور النسبي لكل نطاق كما يلي:

G_i	D_i	D_i	النطاق
	$\overline{\sum D_i}$		
2.392	0.299	57500	١
2.384	0.298	57400	۲
3.224	1.00	77700	٣
8.000		•	الإجمالي

ه د ۱۸۰ طریقة تدرج الکثافة المشبعة کا طریقة تدرج الکثافة المشبعة (Density-Saturated Gradient Method)

تُم إستخدام طريقة التدرج الكثافة المشبعة لأول مرة في دراسة نقل منطقة شيكاغو. منذ ذلك الحين، شرح العديد من الباحثين هذا العمل الأساسي. يتم إستخدام ثلاث قواعد تجريبية في هذه الطريقة:

- 1. تنخفض كثافة إستخدام الأراضي مع زيادة المسافة أو زمن الرحلة إلى منطقة الأعمال المركزية.
- ٢. تنخفض نسبة مساحة الأرض المستخدمة إلى مساحة الأرض المتاحة مع زيادة المسافة من المنطقة التجارية المركزية.
- ٣. تظل نسبة الأراضي المخصصة لكل نوع من أنواع إستخدام الأراضي في منطقة ما مستقرة.

قدم كلارك افتراضا آخر لا يتم التعامل معه بواسطة معادلة الكثافة. لقد افترض أن الكثافات المرتفعة في وسط المدينة والكثافة المنخفضة في الضواحي ستميل إلى التعادل بمرور الوقت في معظم المناطق الحضرية. ويدعم ذلك نتائج أحدث تعدادا سكانيا. تشير هذه الملاحظة إلى أن طريقة تدرج الكثافة المشبعة هي دالة للعمر أو الموقع الإقليمي للمدينة ويمكن تحديدها بشكل تجريبي.

إن السُّعة القابضة توضيح كما في المعادلة التالية:

 $HC_i = P_i + V_i d$ معادلة (١١-٥)

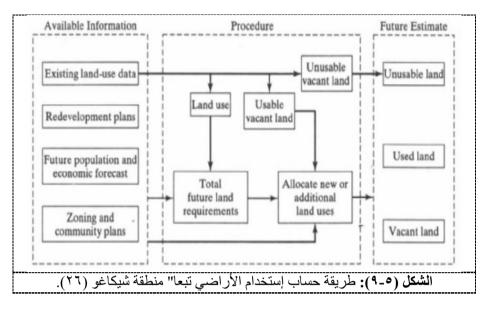
حيث إن:

 HC_i : السعة القابضة للنطاق

عدد السكان في المنطقة السكنية: P_i

 V_i : المساحات الفارغة،المتوفرة والمناسبة في النطاق V_i

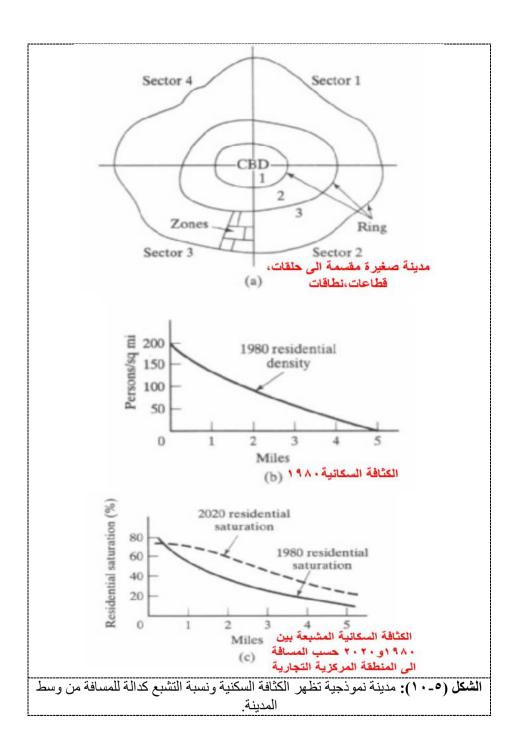
d: متوسط الكثافة المتوقعة التي ستحدث فيها جميع التطورات السكنية المستقبلية.


كذلك،

النسبة السكانية المشبعة للنطاق ¡ في سنة معينة:

(عدد السكان في النطاق ¡ في سنة محددة/ السعة القابضة للنطاق ¡)*١٠٠ معادلة (١٢-٥)

يتم تقدير الأراضي الشاغرة الصالحة للتطوير السكني من تخطيط البيانات وخطط تقسيم النطاقات. يتم رسم نسبة التشبع في سنة الأساس (السكان/ السكنية) مقابل المسافة من وسط المدينة. والخطوة التالية هي إسقاط سنة الأفق لمنحنى النسبة المئوية للتشبع. هذه هي الخطوة الأكثر أهمية.


المحدد الوحيد على المنحنى المتوقع هو أن المنطقة الواقعة تحت المنحنى الجديد يجب أن تأخذ في الاعتبار النمو الإقليمي الحالي بالإضافة إلى المتوقع. يتم تحديد مجاميع السكان المتوقعة بواسطة حلقات التحليل باستخدام القيم الإحداثية المناسبة لمنحنى سنة الأفق. يتم الانتهاء من توزيع مجاميع الحلقات على مساحات التعداد الفردية بمساعدة عوامل التطوير السكني. يوضح الشكل رقم (٥-٩) مخطط انسيابي بسيط لإجراءات تقدير مدينة شيكاغو.

يمكن وصف الطريقة على النحو التالى:

- انشاء العلاقة بين الكثافة السكنية والمسافة من منطقة الأعمال المركزية،
 كما موضح في الشكل رقم (٥-١٠- أ).
- تحديد النسبة المئوية لعدد السكان المشبع لكل منطقة وتجميع هذه النسبة حسب الحلقة والقطاع.
- 7. تحديد النسبة المئوية لمساحة الأراضي المتاحة في كل منطقة التي تم تخصيصها للاستخدام السكني. يتم رسم هذه النسبة، والمعروفة باسم النسبة المئوية للتشبع السكني، مقابل المسافة من المنطقة التجارية المركزية الشكل رقم (٥-٠١- ج).
- الحصول على إجمالي عدد السكان للسنة المتوقعة للمدينة، مدخل خارجي.
- أرسم منحنى يمثل الكثافة السكانية، على غرار تلك المرسومة ضمن الخطوة ٢، بحيث تتناسب المساحة الموجودة أسفل المنحنى مع إجمالي السكان الذين تم الحصول عليهم في الخطوة ٤. هذه هي الخطوة الأكثر أهمية.
- آ. توقع المجاميع السكانية حسب الحلقات ضمن التحليل. يتم تحديد هذه المجاميع عن طريق توسيع نطاق القيم الإحداثية المناسبة من خطوة السنة الأفق.
 ٧. توزيع مجاميع الحلقات على المناطق الفردية عن طريق ترجيح جاذبية كل منطقة بشكل فردي وفقا لعوامل مثل المسافة إلى مراكز التسوق، والمسافة إلى أنظمة الشوارع الرئيسية أو خطوط الحافلات، والسعة السكنية، والقرب

من المدرسة، وما إلى ذلك.

مثال رقم ٦

مدينة صغيرة تتكون من ثلاث حلقات كما هو موضح في الشكل رقم (٥-١١). تحتوى إحدى الحلقات على ثلاث مناطق نموذجية (١,٢و ٣). خصائص هذه المناطق هي كما يلي.

إن السكان الحاليين (لعام ١٩٨٠) لكل منطقة من المناطق الثلاثة معلومين، حيث إن الأرض الإضافية المتاحة للاستخدام السكني (المشار إليها في العمودين ٥ و ٢، على التوالي، من جدول الحلول). تم الحصول على سكان هذه المناطق الثلاثة أعوام ٢٠٠٠ وتساوى ٦١٠٠. خصص هذه المجموعة السكانية المتوقعة للمناطق الثلاثة باستخدام طريقة تدرج الكثافة المشبعة.

<u>الحل:</u> تحليل التطوير السكني الحالي كما يلي:

الكثافة السكانية المشبعة للنطاقات بوحدات (أشخاص/فدان) =

= 21.7 شخص لكل فدان

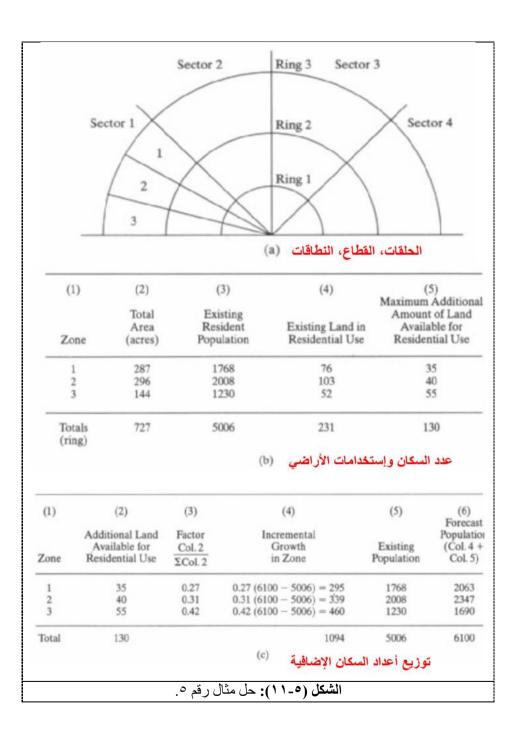
السعة السكنية للنطاقات

 $5006 + [21.7 \times 130] =$

= 7827أشخاص

نسبة السعة السكنية الحالية

5006/7827=


64% =

إن تحديد السكان الإضافيين =

6100-5006

1094 =

تم حساب قيمة ٧٨٢٧ شخصا" على أنها السعة الاستيعابية للمناطق الثلاث على إفتراض أن جميع المشاريع السكنية المستقبلية ستتم بنفس الكثافة الموجودة حاليا (أي ٢١,٧ شخصا لكل فدان). يجب أن تنتج القيمة التي يجب تبنيها بالضبط عن تُحليل أنماط الكثافة الحالية، وسياسة تقسيم النطاقات، وبالطبع يبقى حكم المحلل.

٥٠٨٠٥ نماذج إستخدام الأراضي التشغيلية Operational Land Use Models)

وضح الدليل الذي تم نشره من قبل مجلس بحوث النقل (TRB) نحو ٢٠ نموذجا لاستخدام الأراضى لها هدفان رئيسان هما: تحسين ممارسة التنبؤات باستخدام الأراضى وتحديد الأدوات والإجراءات اللازمة للتقييم الواقعي لآثار استخدام الأراضي المترتبة على استثمارات وسياسات النقل. كما تم ذكر العديد من نموذجات استخدام الأراضي التي يمكن استخدامها بمساعدة برامج الحاسوب. تم تطوير مجموعة متنوعة من نموذجات استخدام الأراضي واستخدامها على نطاق واسع. مع ذلك، هناك بعض الاعتبارات الأساسية التي يجب وضعها في الاعتبار في أَثناء اختيار النموذج، بما في ذلك النموذجات التّي تم استخدامها على نطاق وأسع، التي طورها Putman (١٩٨٣)، المدرجة في الدليل والموضح أدناه. إنه في الأساس نموذج موضعي يتنبأ بالمساكن وأماكن العمل القاعدة النظرية هي كما

معادلة (٥-١٣) $N_i = \sum_i E_i P_{ii}$

حبث إن:

:N: الأشخاص الذي يعيش في النطاق i.

i الأشخاص الذين يعملون في النطاق: E_i

i ويعيشون في النطاق i إنطاق i ويعيشون في النطاق i

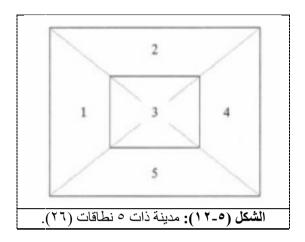
 $P_{ii} = f(C_{ii})$

حيث إن: $C_{i.i}$: كلفة زمن الرحلة بين النطاق $c_{i.i}$

 $f(C_{i,i}) = C_{i,i}^{-\infty} / \sum C_{i,i}^{-\infty}$

∞: معامل حساسية الكلفة.

مدينة صغيرة تتكون من ٥ نطاقات، كما هو موضح في الشكل رقم (٥-١٢) مع إجمالي العمالة ٢٠٠٠ فرصة عمل موزعة على النحو التالي:


النطاق ١:٠٠٠

النطاق ۲۰۰۰،۲

النطاق ٣:٠٠٠

النطاق ٤: •

النطاق ٥: •

إذا كان $\infty = -7$ إعتمادا" على مسح النقل، كيف سيتم توزيع السكان؟ على إفتراض أن 7.00 رب للأسر الذين يعيشون في المدينة. إن تكاليف النقل معطاة كما هو موضح أدناه:

٥	ŧ	٣	۲	
۲.٥	۲.۰	1.0	1	1
۲.۰	1.0	1	1.0	۲
۲.٥	١	1.0	۲.۰	٣
1.0	۲	۲.۰	1.0	٤
١	۲.٥	۲.۰	۲.٥	٥

<u>الحل:</u> إحسب عدد السكان في النطاق ١ كمايلي:

$$N_i = \sum_j E_j \left(C_{i,j}^{-\infty} / \sum C_{i,j}^{-\infty} \right)$$

$$N_i = E_i \left(C_{i,1}^{-2} / \sum C_{i,1}^{-2} \right) + \dots + E_5 \left(C_{i,5}^{-2} / \sum C_{i,5}^{-2} \right)$$

$$\frac{1000(1.00)}{2.29} + \frac{2000(0.44)}{2.38} + \frac{3000(0.25)}{2.10}$$

$$1160 =$$

بنفس الطريقة:

$$760 = N_4$$
 $1660 = N_2$
 $510 = N_5$ $1910 = N_3$

الفصل السادس تنبؤ الطلب على النقل

1.٦ أدوات تخطيط النقل (Sketch Planning Tools)

أدوات التخطيط هو الفحص الأولي للمكونات أو المفاهيم المحتملة. يتم استخدامه لمقارنة عدد كبير من السياسات المقترحة بتفاصيل تحليلية غير كافية لدعم قرارات السياسة العامة وهي مفيدة في كل من التخطيط الإقليمي طويل وقصير المدى وفي التحليل الأولي للممرات. إن استخدام أدوات التخطيط مع الحد الأدنى من البيانات والتقديرات الإجمالية لتكاليف رأس المال والتشغيل، وتدفقات حركة المرور في الممرات، ومستويات الخدمة، والطاقة، وتلوث الهواء. يستخدم المخطط عادة أدوات التخطيط حتى تنشأ الحاجة إلى فحص بديل للخطة الإستراتيجية بمستوى أدق من النفاصيل.

Traditional Tools) الأدوات التقليدية

تتعامل الأدوات التقليدية مع نوع التفاصيل التكتيكية المناسبة للمخططين ويتعامل المخططون مع بدائل أقل من الأدوات الأخرى، ولكن بتفصيل أكبر بكثير. من الأمثلة على ذلك موقع الطرق السريعة الرئيسية ومسارات النقل العام. وفي هذا المستوى من التحليل، تمثل النواتج حسابات مفصلة للسعة الاستيعابية للنقل العام والمتطلبات التشغيلية لمناطق محددة، وتنبؤات التكاليف، ومستوى الخدمات لمناطق جغرافية محددة. يمكن أيضا تقييم النزوح للمناطق السكنية والضوضاء والعوامل الحمالية.

تبلغ تكلفة فحص البديل ضمن المستوى التقليدي حوالي ١٠-٢٠ ضعف تكلفته على مستويات التخطيط الأخرى، مع أنه يمكن استخدام النموذجات الافتراضية، التي تتشتت مع العديد من متطلبات البيانات، لإلقاء نظرة أولى أقل اتساعا. يمكن تحليل الخطط بالتفصيل، وقد تشير المشكلات التي تم الكشف عنها في هذه المرحلة إلى العودة إلى التخطيط لاستيعاب المحددات الجديدة. إن الأدوات التقليدية النموذجية هي محور هذا الفصل.

7.7 أدوات التحليل المجهري (Microanalysis Tools)

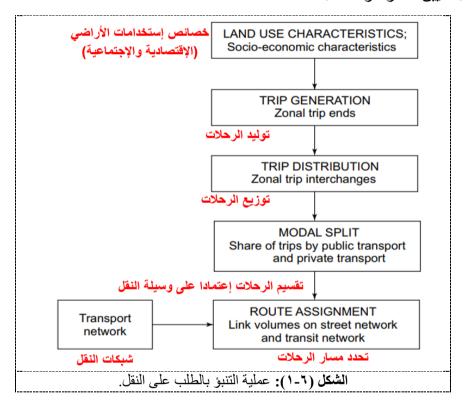
هي الأدوات الأكثر تفصيلا من جميع أدوات التخطيط. في هذا المستوى من التحليل، قد يرغب المخطط، على سبيل المثال، في إجراء تقييم لتمديد أو إعادة جدولة أو

إعادة تسعير خدمات الحافلات، لتحليل تدفقات الركاب والمركبات عبر محطة نقل أو مركز نشاط، أو لمقارنة إستراتيجيات التوجيه والإغلاق المحتملة لنظام يتم تتشيطه حسب الطلب. إن التحليل النهائي على هذا المستوى باهظ التكلفة باستثناء الأنظمة الفرعية التي من المحتمل جدا تنفيذها، التي ستؤدي التحسينات في تصميمها إلى زيادة كبيرة في الخدمة أو تخفيضات كبيرة في التكلفة ويكون أكثر فاعلية في التخطيط على المدى القريب عندما يمكن ملاحظة أو تقدير عدد كبير من المتغيرات الخارجية بدقة.

(Travel Demand and Forecasting النقل وعملية التنبؤ Process)

إن تطوير النقل جزء لا يتجزأ من البيئة الحضرية يعزز التوسع في المناطق الحضرية مع توزيع أفضل للبضائع والخدمات وكثافة أعلى للأنشطة الحضرية. ويصاحب التوسع في المنطقة الحضرية نموا سكانيا وزيادة مستمرة في نقل الركاب وحركة البضائع، مما يستلزم توفير المزيد من الخدمات العامة والمرافق الحضرية. تتأثر عملية تخطيط النقل الحضري بالمجموعة الإجمالية للأنشطة البشرية في منطقة حضرية. يجب تطوير الإستراتيجيات والشروع في تدابير التخطيط لتأمين النقل المتوازن، لتسهيل حساب الطلب على النقل بشكل واقعي. علما أن التنبؤ بالطلب على النقل الشاملة.

يتأثر الطلب على النقل بصياغة السياسة الاقتصادية الوطنية، التي تستند إلى افتراضات فلسفية غير كافية ومدى لا يمكن التنبؤ به للتضخم والعمالة. مع أن تطبيق نموذجات ديناميكية وعشوائية متطورة، موثوقيها محدودة بسبب عدم اليقين فيما يتعلق بافتراض أن المستقبل مشابه للظروف الحالية. مع ذلك، نحاول التوصل إلى تقدير واقعى للطلب على النقل في المستقبل لتسهيل تخطيط النقل المقبول.

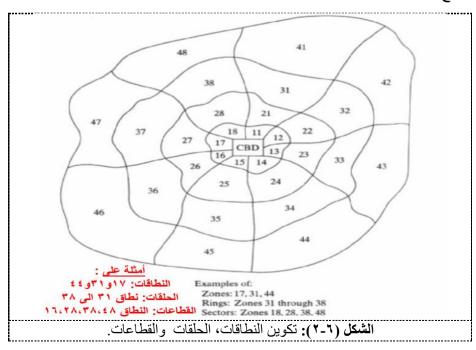

كما هو موضح من قبل، يمكن تصنيف الرحلات على نطاق واسع على أنها رحلات منزلية ورحلات غير منزلية. اعتمادا على الغرض، قد تكون الرحلات مختلفة بصفة رحلات من المنزل إلى العمل، الرحلات المدرسية، رحلات العمل، والرحلات الاجتماعية والترفيهية. حسب وسيلة النقل، يمكن تصنيف الرحلات على أنها رحلات نقل عام (الحافلات والترام والسكك الحديدية)، رحلات النقل الخاصة (سيارة، بمحركات ذات عجلتين، دراجة، والمشي)، ورحلات النقل العام الوسيطة (سيارات الأجرة، المركبات المستأجرة).

لغرض التخطيط الحضري، يتم أخذ سنة التحري أو التحقق سنة الأساس، والسنة المستقبلية التي يتم التخطيط لها تسمى سنة الأفق. يطلق على المدة الفاصلة بين سنة الأساس وسنة الأفق مدة الخطة، التي قد تكون ٢٠ عاما للتخطيط طويل الأمد وحوالي ٥ سنوات للتخطيط قصير الأمد.

يتم تطوير نموذجات النقل المتعلقة بالطلب على النقل بمختلف المتغيرات الاجتماعية والاقتصادية والديموغرافية. يتم تطبيق هذا النموذجات للتنبؤ بالطلب المحتمل على النقل سنة الأفق باستخدام افتراضات معقولة فيما يتعلق بعملية التنبؤ بالطلب على النقل الذي تتكون من أربع مراحل كما موضح في الشكل رقم (٦-١):

أ. توليد الرحلات.

- ب. توزيع الرحلات.
- ج. تقسيم الرحلات على أساس وسيلة النقل.
 - د. تعيين مسار الرحلات.


(Urban Activity Forecasts) التنبؤ بالفعاليات الحضرية

توفر تنبؤات النشاط الحضري معلومات عن موقع وكثافة النشاط المستقبلي في منطقة حضرية وتوفر مدخلات أساسية لتوليد الرحلات. توفر أوصاف الطرق السريعة وشبكات النقل العام المعلومات اللازمة لتحديد إمدادات النقل في المنطقة. توفر توقعات النشاط الحضري تقديرات للمكان الذي سيعيش فيه الناس وأين ستكون الشركات والمؤسسات في المستقبل. وتشمل هذه التوقعات أيضا كثافة النشاط، مثل عدد الأسر وعدد الموظفين في الشركات. يوضح الشكل (٢-٢) تشكيل النطاقات

والحلقات والقطاعات لمدينة صغيرة وهي تساعد بصورة كبيرة في تنظيم المعلومات والتنبؤ. قد تكون هناك عدة عوامل إضافية معروفة أيضا، مثل ملكية المركبة والكثافة السكانية ومساحة الأرض الشاغرة. تتم التوقعات لمناطق صغيرة من الأرض تسمى النطاقات. تختلف النطاقات في الحجم، مع أصغر حجم للمنطقة في وسط المدينة، في حين أن أكبرها على ضواحي المنطقة الحضرية التي تقارب مساحتها عدة أميال مربعة في المنطقة. يمكن أن تحتوي المنطقة التي يبلغ عدد سكانها مليون شخص على ٧٠٠ إلى ٨٠٠ نطاق وتستند توقعات النشاط الحضري للنطاقات إلى ما يلى:

- أ. مجموع بيانات وحسابات سكان المناطق الحضرية والعمالة.
 - ب. تأثير الموقع من الناس ومناطق العمل.
- ت. السياسات المحلية المتعلقة بتطوير الأراضي والنقل والنطاقات والمجاري وما إلى ذلك.

بمجرد تقسيم منطقة الدراسة إلى وحدات تحليل مناسبة، مثل النطاقات والقطاعات، يمكن جمع المعلومات حول الأنشطة في هذه المناطق وتجميعها. توفر نتائج تحليل النشاط النموذجي للمخطط المستويات الحالية من الأنشطة في المناطق للمساعدة في التنبؤ بالمستويات المستقبلية. إن توقعات النشاط هذه هي مدخلات قاصد للمرحلة التالية من العملية، وهي مرحلة تحليل توليد الرحلات التي سيتم شرحها في الفصل السابع.

الفصل السابع نمذجة توليد الرحلات

(Trip Generation) توليد الرحلات

توليد الرحلات هي العملية التي يتم بواسطة تحويل النشاط الحضري إلى عدد من الرحلات. على سبيل المثال، يختلف عدد الرحلات التي يتم تولدها بواسطة مركز التسوق تماما عن عدد الرحلات التي يتم تولدها بواسطة مجمع صناعي الذي يشغل نفس المساحة تقريبا. في نموذج توليد الرحلات، يحاول المخطط تحديد العلاقة بين النشاط الحضري والنقل. توفر بيانات المسح التي تمت مناقشتها في الفصول السابقة المدخلات لتحليل توليد الرحلات. تظهر استطلاعات المسافرين في منطقة الدراسة الرحلات التي تم القيام بها وربط هذه الرحلات بأنماط استخدام الأراضي. إن التحليلات قادرة على التنبؤ بعدد الرحلات التي سيتم إجراؤها في المستقبل بالنظر الي توقعات السكان والأنشطة الحضرية الأخرى.

ترتبط مرحلة تحليل ونمذجة توليد الرحلات بمناطق استخدام الأراضي حسب نوع وكثافة استخدام الأراضي. يتم اشتقاق العلاقات بين استخدام الأراضي الحالي والطلب على النقل، ويتم تطوير نموذجات للتنبؤ بالطلب على النقل في سنة مستقبلية بناء على التغير المتوقع في استخدام الأراضي وخصائص الرحلات.

هناك نوعان من توليد الرحلة:

1. انتاج الرحلة التي تغطي الرحلات الناتجة عن المناطق السكنية حيث يكون لهذه الرحلات منزل بدايته أو (منشأ الرحلة) أو وجهة الرحلة.

جذب الرحلات، التي تشير إلى الرحلات الناتجة عن الأنشطة غير المنزلية
 أي نهاية الرحلة المنزلية

كمثال مبسط: تظهر بيانات مسح مدينة صغيرة أن النطاق رقم ١١ له ٩٠٠٠ شخص ويجذب ٤٥١١ رحلة، بقسمة الرحلات على الموظفين نجد أن حوالي خمس رحلات جذبا لكل موظف. يمكن بعد ذلك استخدام هذا المعدل للتنبؤ بمناطق الجذب لمستويات التوظيف المستقبلية. إن ناتج تحليل توليد الرحلة هو جدول لبداية وجهة الرحلة عدد الرحلات المتولدة والعدد الذي يتم جذبه.

كما ذكرنا سابقاً "، يتم تقسيم منطقة الدراسة إلى نطاقات لأغراض التحليل. بعد تحليل توليد الرحلة، يعرف المخطط عدد الرحلات التي تنتجها كل منطقة وعدد الرحلات التي تجذبها كل منطقة. إضافة إلى ذلك، يعرف المخطط أغراض الرحلات ويتم وضع الرحلات في عدة فئات حسب غرض الرحلة، مثل الرحلات

من المنزل إلى العمل، أو من المنزل إلى المتجر، أو من المنزل إلى المدرسة. هذا التصنيف ضروري لأن الغرض من كل رحلة يظهر نمطا وسلوك صانع الرحلة. على سبيل المثال، الرحلات المدرسية ورحلات العمل منتظمة جدا؛ أما رحلات التسوق والترفيه أقل انتظاما.

(Factors Influencing Trip على توليد الرحلات على توليد المؤثرة على توليد الرحلات Generation)

تشمل العوامل التي تؤثر على توليد الرحلات في منطقة حضرية على التالي وموضحة في الجدول (٧-١):

- ا. دخل الأسرة
- ٢. ملكية المركبات
 - ٣. حجم الأسرة
- ٤. المسافة من منطقة الأعمال المركزية
 - ع. الكثافة السكانية
- ٦. مساحة المناطق التجارية والصناعية
 - ٧ عدد الوظائف المتاحة
 - ٨. إمكانية الوصول

جدول (٧-١): العوامل المؤثرة على توليد وجذب الرحلات.

جذب الرحلات	توليد الرحلات
حجم العمالة	دخل الأسرة
مساحة المناطق التجارية	ملكية المركبات
مساحة المناطق الصناعية	حجم الأسرة
إمكانية الوصولية	المسافة من منطقة الأعمال المركزية
المساحات للمؤسسات التعليمية	الكثافة السكنية

يزداد معدل الرحلات مع زيادة عدد الأشخاص لكل أسرة، ودخل الأسرة، وملكية المركبات الخاصة. تؤثر درجة التحضر على عدد الرحلات، وترتبط المسافة من منطقة الأعمال المركزية بدرجة التحضر. وسيؤدي تحسين إمكانية الوصول إلى وسائل النقل العام مع زيادة الكفاءة أو مستوى الخدمة إلى زيادة عدد الرحلات. تتأثر إمكانية القيام بالرحلات أيضا بمستوى فرص العمل والنشاط الصناعي والأنشطة التجارية التي تقاس غالبا من حيث المساحة الأرضية التي تشغلها استخدامات مختلفة.

۳.۷ نماذج توليد الرحلات (Models of Trip Generation)

في مرحلة تحليل توليد الرحلات من عملية التنبؤ بالطلب على النقل، يتم تطوير نموذجات لحساب الرحلات الناتجة عن المنطقة لكل غرض من أغراض الرحلة، اعتمادا "على تطورات استخدام الأراضي المستقبلية، والخصائص الاجتماعية والاقتصادية، وطبيعة مرافق النقل في المنطقة. تتطلب النموذجات فهم أوضح للعلاقات بين نظام النقل وسلوك النقل للفرد. تطور النموذجات على افتراض وجود علاقة قابلة للقياس بين استخدام الأراضي وكثافة النقل وتوزيعه.

هناك طريقتان لنمذجة توليد الرحلات هما:

- ا. الانحدار الخطي المتعدد (Regression Analysis Method).
- . (Cross- Classification Methods) التصنيف حسب الفئات
 - T. عامل النمو (Growth Factor)

(Regression Analysis Method) الإنحدار الخطى المتعدد

تعد تقنيات الانحدار الخطي المتعددة الطريقة الأكثر استخداما لتحليل توليد الرحلة. هذه تقنية ثابتة يتم فيها تقدير تأثير العوامل المستقلة المختلفة بالاشتراك مع عوامل مستقلة أخرى على المتغير التابع. يمكن أن تكون المتغيرات المستقلة هي عوامل التخطيط مثل إجمالي عدد السكان وعدد الأسر وحجم الأسرة وملكية المركبة وما إلى ذلك. يمكن أن يكون المتغير التابع هو عدد نهايات الرحلات في النطاقات (المتولدة والمنجذبة) حسب وسيلة النقل والغرض من الرحلة.

شكل الدالة لهذه الطريقة كالتالي:

$$($$
ا- $^{\vee})$ معادلة $Y_p = a_0 + a_1 X_1 + a_2 X_2 + \dots + a_k X_k + U$

حيث أن:

 Y_n : الرحلات المتولدة للغرض Y_n

عامل الأنحدار الجزئي. a_i

معامل التخطيط. X_i

U: معامل الإضطراب.

تعتمد تقنيات تحليل الانحدار الخطي المتعدد لنماذج توليد الرحلة المتولدة على الافتر اضات التالية:

أ. يرتبط كل متغير من المتغيرات المستقلة خطيا "بالمتغير التابع.

ب. يتم توزيع جميع المتغيرات بشكل طبيعي ومستمر.

ت. المتغيرات المستقلة ليست مرتبطة ارتباطا وثيقا فيما بينها.

ث. تأثیر کل متغیر مستقل هو مادة مضافة، أي إن کل متغیر مستقل یشرح جزءا" من تباین المتغیر التابع.

يتم اشتقاق نموذجات الانحدار باستخدام القيم الحالية للمتغيرات التابعة والمستقلة للمنطقة قيد الدراسة باستخدام تقنية المربعات الصغرى. من المفترض أن المعاملات والمعلمات الأخرى المحددة على هذا النحو ستكون صالحة للوضع المستقبلي. إن معرفة القيم المستقبلية لخصائص المنطقة مستمدة من نموذجات تطوير استخدام الأراضي حيث يتم تقدير عدد الرحلات للسنة الأفق لأغراض الرحلة المختلفة. لا يمكن للمخطط أن يتوافق مع هذه المواصفات ولهذا السبب تعترض تحليل الانحدار لانتقادات كبيرة. قد تظهر معادلة الانحدار النموذجية على النحو التالى:

 $Y = 0.0649X_1 - 0.0034X_2 + 0.0066X_3 + 0.9486X_4 + 12$

حيث إن:

الأسر الرحلات/ الأسر X_1

حجم الأسرة: X_2

دخل الأسرة: X_3

مرکبة/اسرة X_4

لحساب تقدير Y لنطاق معين في السنة المستقبلية، التقديرات المناسبة L_1 , L_2 ، L_3 ، L_4 ، L_5 يشار إلى جودة ملائمة خط الإنحدار الذي يحدده تحليل الإنحدار الخطي المتعدد من خلال معامل الإرتباط المتعدد (قوة الإرتباط) الذي يمثله R، القيمة بين • و ١. كلما كان R أقرب الى ١، كلما كانت العلاقة الخطية بين المتغيرات أفضل.

عند إجراء تحقيقات أولية في صنع الرحلات، من المفيد حساب معاملات الإرتباط بين صنع الرحلات والمتغيرات المستقلة المنفصلة. تظهر نتيجة الحساب النموذجي في الجدول رقم (٧-٢)، والذي يمكن من خلاله الحصول على تقدير لنمط العلاقات الخطية بين أزواج المتغيرات. يمكن ملاحظة أن المتغير التابع Y، يرتبط إرتباطا" وثيقا" بالمتغير المستقل X_1 ، خلال X_4 ولكن يرتبط إرتباطا" ضعيفا" إلى حد ما X_6

جدول (٧-٢): مصفوفة معاملات الأرتباط الخطي.

جميع الرحلات منزلية	المتغيرات المعتمدة	
٠.٤١	حجم الأسرة	X_1
٠.٧٦_	الكثافة السكانية	X_2
٠.٧٣	معدل دخل الأسرة	X_3

٠.٨٦	ملكية المركبات لكل منزل	X_4
٠.٣٢	الرحلة الى منطقة مركزية تجارية	X_5
۲۷	نسبة رحلات الأطفال للمدارس	X_6

تقنيات الإنحدار المتعددة مناسبة لتحليل النقل لأنه من السهل تحديد درجة العلاقة بين المتغيرات التابعة والمتغيرات المستقلة. من الممكن أيضا تحديد قدرة المعادلة على التنبؤ بدقة. بصرف النظر عن الخطأ المعياري للتقدير (S_{1}) ، وهو مقياس لإنحراف عدد الرحلات المرصودة، على سبيل المثال، عن القيم التي تنبأت بها المعادلة. اضافة الى ذلك، يتم حساب معاملات الإرتباط الجزئي (r_i) لكل متغير من المتغيرات المستقلة. إن العلاقة بين المتغيرات التابعة (Y) والمُتغيرات المستقلة الخاصة (X_i) تكون قيد التحرى. يمكن إستخدام إختبار ت (t-Test) لتحديد ما إذا كان معامل الانحدار المحسوب مهما".

باختصار:

$$(Y-Y)$$
 معادلة $Y_e = A + B_1 X_1 + B_2 X_2 + B_3 X_3 + \dots + B_n X_n$

حيث إن B_1, \dots, B_n : معاملات الإنحدار الجزئي.

$$\left(\Upsilon-\Upsilon
ight)$$
 معادلة $R^2=rac{\sum(Y_e-\mu_Y)^2}{\sum(Y_i-\mu_Y)^2}$

ردغ) معادلة
$$S_e=rac{\sum Y_e^2}{N-(n+1)}$$

$$(\circ - \lor)$$
 معادلة $S_{B_i} = rac{S_e^2}{S_{x_i}N(1-R_{x_i}^2)}$

$$t = \frac{B_n}{S_n}$$
معادلة (۱-۲)

Y: القيمة المحسوبة للمتغيرات التابعة.

متوسط المتغيرات التابعة. μ_{V}

R²: معامل الإرتباط المتعدد

S: قيمة الخطأ المعياري أو القياسي.

 X_i : الإنحراف المعياري للمتغيرات المستقلة X_i

معامل الإرتباط المتعدد بين X_i و بقية المتغيرات المستقلة.

مثال رقم 1 توصل أحد المحللين إلى معادلات الإنحدار التالية ومصفوفة إرتباط بسيطة لـ ٢٠ نطاق، على النحو التالي:

$$Y = 50.5 + 0.8X_1$$

$$s_t = 210, R^2 = 0.95, t = 34$$

$$Y = 308 + 0.79X_2$$

$$s_t = 844$$
, $R^2 = 0.88$, $t = 29$

$$Y = 52.7 + 0.85X_2 + 1.75X_3$$

$$s_t = 205, \ R^2 = 0.98, t = 60; 22$$

$$Y = -105 + 1.38X_2 - 0.4X_3 + 0.1X_4$$

$$s_t = 155, R^2 = 0.97, t = 3; 2; 0.5$$

<u>حيث إن:</u> Y: عدد الرحلات المتولدة.

نام عدد السكان. X_1

سکان من صنف محدد أ X_2

سکان من صنف محدد ب X_3

عدد الأطفال الذاهبون للمدرسة X_{Λ}

علق على مدى ملائمة هذه المعادلات للإستخدام في در اسة النقل.

الحل: تبدو المعادلة الإحصائية منطقية ومرضية، وإن قيمة t مهم على مستوى ١% من الأهمية.

 $t_{0.001.df=18} = 2.88 < 34$

عالبة جدا. R^2

إن المعادلة Y = 308 + 0.79 أيضا منطقية ومرضية تماما" على الرغم من قيمة الثانت ١٨٥٨ ٣٠٨

في المعادلة $X_2 + 1.75X_2 + 1.75$ مع متغيرين مستقلين $X_2 + 1.75X_3$ ، ولكن مع نفس الخطأ المعياري تقريبا"، لا يوجد الكثير من التحسن على المعادلة الأولى.

كلا معاملات الإنحدار الجزئي ذات دلالة إحصائية (t-2.898, df=16). لاحظ أنه على الرغم من أن R^2 عالية جدا"، إلا أن هذه ليست أفضل معادلة للعمل بها. إن المعادلة R^2 لها $Y = -105 + 1.38X_2 - 0.4X_3 + 0.1X_4$ قيمة عالية جدا"، لكن بيدو أنه غير معقول من ناحيتين:

 $df=16, t_{0.01}=2.92$ الأولى: المعامل السالب (-٥٠) ليس منطقيا"؛ أيضا، 2.92 X_0 السالب X_0 يكشف فحص المصفوفة إن X_1 و X_1 ترتبط إرتباطا" وثيقا: مع X_1 و X_2 لاترتبط إرتباطا" وثيقا" (0.42,0.23).

ومع ذلك ، X_1 برتبط إرتباطا" وثيقا" X_2 ولهذا يمكن حذفها بسهولة.

من بين جميع المعادلات، تبدو المعادلة الأولى هي الأكثر منطقية للإستخدام. يمكن ملاحظة نقطتين:

ا. ارتفاع قيمة R^2 في حد ذاته يعني منخفض إذا كان فحص R^2 هامشي أو ضعيف.

٢. مجرد وجود عدد كبير من المتغيرات المستقلة لا يعني الكثير. إن عدد كبير من المتغيرات مكلف من وجهة نظر جمع البيانات.

۲۰۳۰۷ تقنية معدل تحليل الرحلة (Trip-Rate Analysis Technique)

يمكن تجميع الرحلات التي تنتجها فئات مختلفة من استخدام الأراضي (مولد الرحلات) والرحلات التي تجتذبها استخدامات مختلفة للأراضي، مثل مراكز التسوق والمناطق الترفيهية، مما يؤدي إلى معدلات توليد الرحلات حسب فئات استخدام الأراضي العامة. على سبيل المثال، وجدت دراسة استقصائية حديثة لمدينة صغيرة أن رحلات التسوق إلى منطقة الأعمال المركزية ومركز التسوق يمكن تجميعها لتكون ٢,٧٥ و ٢,٣٤ رحلات تسوق لكل موظف في أيام الأسبوع، على التوالى.

(Categories Analysis) تحليل الفئات ۳۰۳۰۷

- إحدى التقنيات المستخدمة على نطاق واسع لتحديد عدد الرحلات التي تم إجراؤها تسمى تحليل الفئة أو التحليل حسب التصنيف. يستند هذا النهج على السيطرة على مجموع الرحلات في نهاية المنزل. إن مقدار النقل المتولد من المنزل هو بدلالة عدد الأسر، وخصائص الأسر، ومستوى الدخل، وملكية المركبة.
- في الرحلات ذات النهاية غير المنزلية، يتم تطوير مؤشر التوزيع بناء على خصائص استخدام الأراضي، مثل عدد الموظفين حسب فئات التوظيف (العمالة) ونوع استخدام الأراضي والالتحاق بالمدارس. إن بعض مزايا هذا النهج هي كما يلي:
 - سهولة الفهم من قبل صناع القرار والجمهور.

- الاستخدام الفعال للبيانات. في حالة عدم توفر بيانات المنشأ والوجهة للرحلة، سيكون مسح عينة فئات صغيرة كافيا.
 - رصدها وتحدیثها بسهولة.
- الصلاحية أو التحقق. العملية حساسة لاتخاذ القرار: على سبيل المثال، يمكن استخدام تأثير الكثافة السكانية المختلفة أو ملكية المركبة لتقييم التغييرات المطلوبة في منطقة أو حي مجاور.
- المرونة. التطبيق على مستويات الدراسة المختلفة ممكن: منطقة، نطاق، اقليم، ممر، وما إلى ذلك.
- سهولة نقل التحليل بين المدن أو أجزاء من مناطق الدراسة من نفس الحجم و الخصائص.
- استخدام واسع للبيانات. ويمكن استخدام بيانات التعداد على نطاق واسع في هذه التحليلات، ولا سيما البيانات الاجتماعية والاقتصادية.

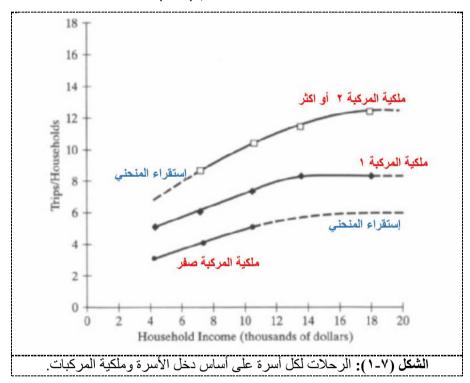
مثال رقم 1 تم أخذ عينات من عشرين أسرة في المدينة بخصوص بيانات دخل الأسرة، والمركبات لكل أسرة، والرحلات المتولدة.

ملكية المركبات	راعة. معدل دخل الأسرة (\$)	الرحلات	والمر الأسر
•	٤٠٠٠	۲	١
•	7	٤	۲
۲	17	١.	٣
•	11	٥	٤
١	٤٥٠٠	٥	0
٣	17	10	٦
١	90	٧	٧
•	9	٤	٨
١	٧	٦	٩
٣	19	١٣	١.
١	١٨٠٠٠	٨	11
١	71	٩	١٢
۲	٧	٩	١٣
۲	11	11	١٤
۲	11	١.	10
۲	17	11	١٦
۲	10	١٢	١٧
١	11	٨	١٨

1	17	٨	19
١	10	٩	۲.

إيجاد المصفوفات التي تربط مستوى الدخل بالمركبات المتاحة، وكذلك ارسم الرسم البياني الذي يربط الرحلات لكل أسرة بالدخل. كم الرحلات المنتجة يوميا لمعدل دخل أسرة مع ١٠٠٠٠ وتمتلك مركبة واحدة؟

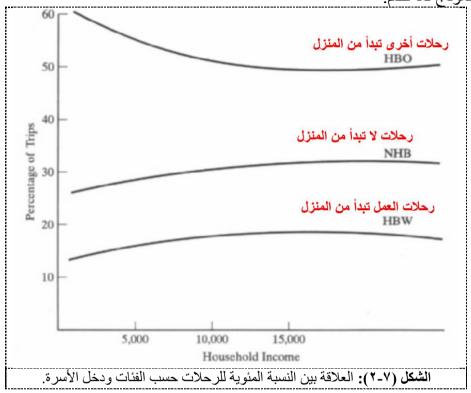
الحل: ١. يتم إعداد مصفوفة على أساس دخل الأسرة وتوافر المركبات وكل خلية في ١٠ يتم إعداد مصفوفة على أساس دخل الأسرة وتوافر المركبات وكل خلية في المصفوفة تمثل أرقام لعينة الأسرة المناسبة حسب التصنيف الموضح أدناه:


ملكية المركبات			دخل الأسرة (١٠٠٠\$)
۲ أو اكثر	صفر ۱ ۲ أو اكثر		
-	٥	۱و ۲	أقل أو يساوي ٦
١٣	٩	٨	9_7
٤ او ١٥	۷و ۱۸	٤	17-9
٦٢و١٢	۱۹و۲۰	-	10_17
٣و ٦ و ١٠	۱۱و۱۲	-	أكبر من ١٥

٢. ٢. يتم حساب متوسط عدد الرحلات التي تولدها الأسرة في كل خلية للمصفوفة. على سبيل المثال، متوسط معدل الرحلة للأسر الذي لديها ٢ مركبة أو أكثر ودخل يتراوح بين ١٢٠٠٠ دولًار و ١٥٠٠٠ دُولارٌ هو ٥,١١، لأن الأسر ١٦ و ١٧ معا "تقوم بإجمالي ٣٣ رحلة. هذه المعدلات المتوسطة موضحة أدناه:

ملكية المركبات			دخل الأسرة (١٠٠٠\$)
۲ أو اكثر	1	صفر	
-	٥	٣	أقل أو يساوي ٦
٩	٦	٤	9_7

10	٧.٥	٥	17-9
11.0	٨.٥	-	10-17
17.7	٨.٥	-	أكبر من ١٥


- 7. يمكن رسم البيانات من المصفوفة الثانية على رسم بياني يربط الرحلات لكل أسرة مع الدخل، ومنحنيات سلسة مرسومة بواسطة النقاط.
- ٤. ستقوم الأسرة التي يبلغ دخلها ١٠٠٠٠ دولار ومركبة واحدة لكل أسرة بعمل ٧ رحلات يوميا انظر الشكل رقم (٧-١).

في المناطق الحضرية، من الممكن أن يستخدم المرء بيانات المسح لإعداد رسوم بيانية توضح العِلاقة بين النسبة المئوية للرحلات حسب تصنيف الفئات: رِحُلات العمل تبدأ من المنزل، ورحلات أخرى (غير العمل) تبدأ من المنزل، ورحلات لا تبدأ من المنزل. من الممكن أيضا أخذ البيانات من المناطق الحضرية الأخرى، إذا لزم الأمر. يظهر مثال على هذه العِلاقة في الشكل رقم (٧-٢).

مثلما تم تطوير معدلات توليد الرِّحُلات بناء على الخصائص المنزلية، يمكن تحديد معدلات جذب الرِّحُلات بواسطة تحليل الأنشطة الحضرية التي تجذب الرِّحُلات.

تنجذب الرّحْلات إلى مواقع مختلفة، اعتمادًا على الخصائص والموقع ومقدار الأنشطة التي تقام في المنطقة. يمكن استعارة معدلات جذب الرّحْلات من مناطق حضرية أخرى أو إيجادها من بيانات المسح التي تربط عدد رحْلات الجذب الى خصائص الفعاليات، الموقع، وكميتها. إن الجدول رقم $(V-\Lambda)$ في المثال رقم Y هو نموذج لما تقدم.

جدول (٧-٨): معدل جذب الرجلات.

	Attractions per Household	Attractions per Nonretail Employee	Attractions per Downtown Retail Employee	Attractions per Other Retail Employee
Home-based work	Negligible	1.7	1.7	1.7
Home-based other	1.0	2.0	5.0	10.0
Non-home-based	1.0	1.0	3.0	5.0

مثال رقم ٢

عدد من نطاقات في الضواحي لديها ٢٠٠٠ مجموعه وحدة سكنية. إن متوسط الدخل لكل وحدة سكنية هو ٢٤٠٠٠. بإستخدام المنحنيات أ، ب، و، ج الموضحة في الشكل رقم (٧-٢)، احسب عدد الرّحْلات التي تولدها نطاقات الضواحي.

الحل:

بعد الذهاب إلى الشكل رقم (٧-٣):

ادخل المنحنى أ مع دخل الأسرة للنطاق لكل وحدة سكنية لتحديد مستوى ملكية المركبة حسب الأسرة:

٢% صفر ملكية مركبة للأسرة = ٢٠ وحدة سكنية

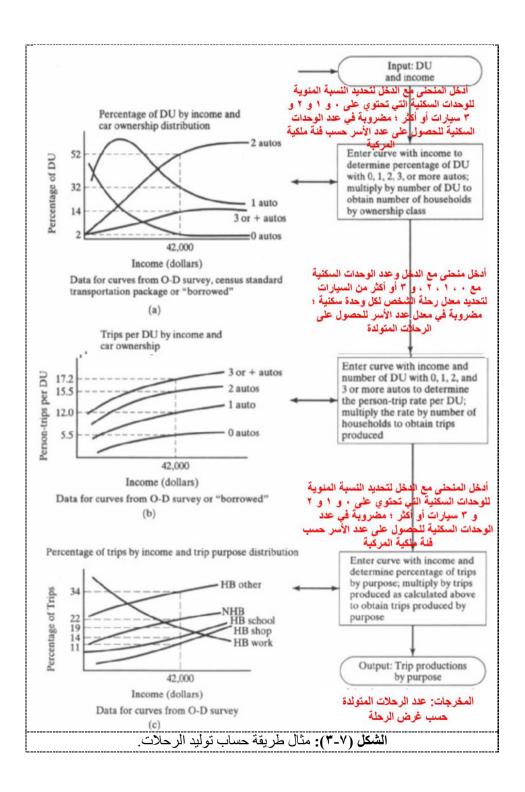
٣٢% ١ ملكية مركبة للأسرة = ٣٢٠ وحدة سكنية

٥٢٠ ٢ ملكية مركبة للأسرة = ٥٢٠ وحدة سكنية

١٤% ٣ ملكية مركبة للأسرة = ١٤٠ وحدة سكنية

٢. إدخل المنحني ب مع دخل الأسرة، لحساب إجمالي الرحلات المتولدة من
 كل وحدة سكنية:

عدد الرحلات (صفر ملكية مركبة) للوحدة السكنية = 0.0 * 7.7 = 11.1 رحلة


عدد الرحلات (۱ ملکیة مرکبة) للوحدة السکنیة = 11 * 70 * 70 محدد الرحلات (۱ ملکیة مرکبة)

عدد الرحلات (۲ ملکیة مرکبة) للوحدة السکنیة = 0.01 * 7.7 = 7.7 رحلة

عدد الرحلات (7 ملکیة مرکبة) للوحدة السکنیة = 1 ۱۷. * ۲۰ + 2 ۲۰ حلة

أجمالي الرحلات = ١٤٤١٨

معدل الرحلات لكل وحدة سكنية = ١٤.٤

٣. أدخل المنحنى ج مع دخل الأسرة لتحديد الرحلات المتولدة حسب الغرض للرحلة:

رحلات المنزل –العمل = 91%* 1121=7077 رحلة رحلات المنزل-السوق = 11%* 1121=7001 رحلة رحلات المنزل-المدرسة= 11%* 1121=701 رحلة رحلات المنزل-الأخرى= 12%* 1121=709 رحلة رحلات لاتبدأ من المنزل= 12%* 12%* 1121=701 رحلة إجمالي عدد الرحلات = 12%*

مثال رقم ٣

نطاق في الضاحية على مشارف المدينة له الأنشطة التالية وزيادة عدد الوحدات السكنية في السنوات الد ١٠ المقبلة. إحسب إجمالي عدد الرحلات المنجذبة.

عدد الوحدات السكنية= ٢٠٠٠

عدد طلبة المدارس الإعدادية= ٨٠٠

عدد طلبة المدارس المتوسطة= ١٨٠٠

عدد مراكز الأنشطة التجارية (بالتجزئة)= ٢٠٠

عدد العمالة= ١٠٠

عدد العمالة (غير التجزئة)= ٥٠

الحل:

يتم الحصول على عدد رحلات الجذب على النحو التالي، بناء على معدلات الجذب النموذجية المشار إليها:

 $= \Upsilon^*(\cdot) + P^*(\cdot)^* + (\cdot)^* + (\cdot)^* =$

رحلاتُ الجذبُ للمدرسة المنزلُ = $9 \cdot ($ عدد طلبة المدارس الإعدادية) + $7 \cdot ($ عدد طلبة مدارس المتوسطة) + $1 \cdot 7 \cdot ($ عدد طلبة الاخرين)

رحلات الجذب الأخرى المنزل = \cdot (عدد الوحدات السكنية) + \cdot (العمالة غير التجزئة) + \cdot (العمالة في مراكز التجزئة) + \cdot (العمالة في من العمالة التجزئة) + \cdot (انواع أخرى من العمالة التجزئة)

رحلات الجذب الأخرى -لا تبدأ من المنزل = $^\circ$. (عدد الوحدات السكنية) + $^\circ$. (العمالة غير التجزئة) + $^\circ$. (العمالة في منطقة تجارية مركزية) + $^\circ$. (العمالة في مراكز التسوق التجزئة) + $^\circ$. (انواع أخرى من العمالة التجزئة) = $^\circ$. $^\circ$. ($^\circ$) + $^\circ$. ($^\circ$) +

الفصل الثامن نمذجة توزيع الرحلات

۱.۸ توزیع الرحلات (Trip Distribution)

بعد مرحلة توليد الرحلة، تكون عدد الرِّحْلات المتولدة والمنجذبة التي ستحصل عليها كل منطقة معلومة. تحدد إجراءات توزيع الرِّحْلات أين ستذهب الرِّحْلات المتولدة في كل منطقة وكيف سيتم تقسيمها بين جميع النطاقات الأخرى في منطقة الدراسة. إن المخرجات من نموذج توزيع الرّحْلات هي مجموعة من الجداول التي تظهر تدفق رحْلات النقل بين كل زوج من النطاقات. مثلا"، نفرض مدينة افتراضية تتكون من خمس نطاقات، قد تنتج المنطقة ١ (٢٠٠٠) رحلة، وقد تجذب المناطق ١ و ٢ و ٣ و ٤ و ٥ (٣٠٠) و (٢٠٠٠) و (٢٠٠٠) و (٨٠٠) ما لتوالي. يتم تمثيل القرار بشأن المكان الذي تذهب إليه الرّحْلات بواسطة مقارنة الجاذبية النسبية وإمكانية الوصول إلى جميع النطاقات في المنطقة.

هناك عدة طرق لتحليل توزيع الرحلة:

۱. طریقهٔ فراتر Fratar.

٢. طريقة نموذج الفرص المتبادلة.

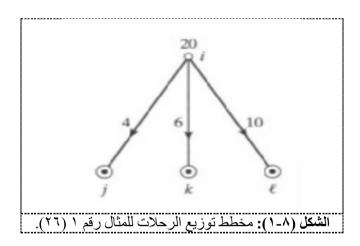
٣. طريقة نموذج الجاذبية Gravity.

۴.۸ طریقة فراتر (Fratar Methods)

أثناء العمل مع Ohio ،Cleveland، منطقة العاصمة، إستخدم ۱۹۰٤) اثناء العمل مع التالية: طريقة بسيطة لتوزيع الرحلات في منطقة الدراسة. قدم الإفتراضات التالية:

- ا. يتناسب توزيع الرحلات المستقبلية من منطقة منشأ معينة مع توزيع الرحلة الحالي.
- ٢. يتم تعديل توزيع الرحلات بواسطة عامل النمو للمنطقة التي ترتبط بها هذه الرحلات.

يمكن كتابة صيغة المعادلة لـFratar كالتالى:


$$(1-\Lambda)$$
 معادلة $t_{ij}^f = t_{ij}^o rac{O_i^f}{O_i^o} rac{D_j^f}{D_j^o} rac{\Sigma_{k=1}^n t_{ik}^o}{\Sigma_{k=1}^n (^D_k^f/_{D_k^o})(t_{ik}^o)}$

حبث ان:

ا. رحلات المنشأ المستقبلية ولسنة الأساس من النطاق O_i^f , O_i^o .j لي النطاق الأساس من النطاق D_i^f , D_i^o j و الرحلات المستقبلية ولسنة الأساس من النطاقات t_{ii}^{o}, t_{ii}^{f}

تم استخدام هذا النموذج على نطاق واسع في العديد من مناطق الدراسة الحضرية، خَاصة لحساب الرِّحْلات الخارجية التّي تأتي من خارج مناطق الدراسة إلى النطاقات الواقعة داخل منطقة الدراسة. كما يمكن توضيح أنه لا يمكن تطبيق نموذج Fratar في حالة إنشاء منطقة جديدة (المنشأ والوجهة) بعد تحديد حجم سنة الأساس. أيضًا، لا يأخذ النموذج في الاعتبار الإعاقة بين حركة المرور في المنطقة.

مثال رقم 1 نطاق i هو المنشأ لرحلات عدد ٢٠ في سنة الأساس الى I,k,j وموزعة كالتالي ٤، ٦و ١٠ على التوالي كما موضح في الشكل أدناه، ولديها معدلات النمو ٢،٣ وو ٥ لـi، i، المواعلى التوالَّى، في ٢٥ سنةً. إحسب الرحلات المستقبلية من إلى K ، j إلى j ، و ا في السنة المستقبلية.

الحل:

 $\xi = k$

كما موضح في الشكل رقم (١-١) $t_{ij}^o = 4, t_{ik}^o = 6, t_{il}^o = 10$ ومعدل النمو: ۱= ۲ ۳=j

$$o=1$$

$$O_{i}^{f} = 20 \times 2 = 40$$

$$D_{j}^{f} = 4 \times 3 = 12$$

$$D_{k}^{f} = 6 \times 4 = 24$$

$$D_{l}^{f} = 10 \times 5 = 50$$

$$\sum D^{f} = 12 + 24 + 50 = 86$$

$$t_{ij}^{f} = (4 \times 2 \times 3) \frac{4+6+10}{86} = 6$$

$$t_{ik}^{f} = (6 \times 2 \times 4) \frac{4+6+10}{86} = 11$$

$$t_{il}^{f} = (10 \times 2 \times 5) \frac{4+6+10}{86} = 23$$

$$t_{ij}^{f} = (10 \times 2 \times 5) \frac{4+6+10}{86} = 23$$

نلاحظ إن رحلات المنشأ المستقبلية =٤٠ ورحلات الوجهة المستثبلية =٨٦ ليست متساوية ٤٠ أقل من ٨٦

سيوضح المثال رقم (٢) كيفية تحقيق عملية التوازن من خلال التكرار.

مثال رقم ٢ يوضح الجدول التالي بيانات الرحلات كمصفوفة ٣ في ٣ مع إجمالي ٢٥٠٠ رحلة بالنسبة لسنة الأساس.

المجموع	٣	۲	١	منشأ
				وجهة
٧	۲	٤	١	١
11	٣	۲	٦	۲
٧	۲	1	٤	٣
70	٧	٧	11	المجموع

يشير الجدول التالي إلى عوامل النمو لمنشأ ووجهة الرحلة لسنة الأفق.

٣	۲	١	النطاق
٤	٣	۲	معامل النمو لمنشأ
			معامل النمو لمنشأ الرحلة (التوليد)
۲	٤	٣	معامل النمو لوجهة الرحلة (الجذب)
			الرحلة (الجذب)

إستخدم تقنية Fratar لتوزيع الرحلات في سنة الأفق.

الحل:

إن جدول الرحلة المطلوب بالنسبة لسنة الأفق كما موضح أدناه، حيث يساوي إجمالي الصف والعمود إجمالي سنة الأساس المقابلة مضروبة في عوامل نمو المنشأ والوجهة:

المجموع	٣	۲	1	منشأ وجهة
١٤	Х	Х	Х	١
٣٣	Х	Х	х	7
۲۸	Х	Х	Х	٣
٧٥	١٤	۲۸	٣٣	المجموع

العثور على قيمة x (لكل خلية في المصفوفة) هو الغرض الرئيسي من تقنية Fratar. الخطوة التالية هي ضرب عوامل نمو الوجهة في أرقام الخلايا، ويعطي النتائج في المصفوفة التالية:

معامل الصف	المجموع المطلوب	المجموع الفعلي	٣	۲	1	منشأ وجهة
٠.٦١	١٤	74	٤	١٦	٣	1
1.00	٣٣	٣٢	٦	٨	١٨	۲
1.2.	۲۸	۲.	٤	٤	١٢	٣
		٧٥	١٤	۲۸	٣٣	المجموع

ومع ذلك، لا تتطابق مجاميع الصف الفعلية وإجمالي الصف المطلوبة ويتم حساب مجموعة من عوامل الصف في أرقام الخلية في المصفوفة السابقة ونحصل على قيم الخلية الجديدة في الجدول التالي:

المجموع	٣	۲	1	منشأ
_				وجهة
١٤	۲	١.	۲	1
٣٣	٦	٨	19	۲
۲۸	٦	٦	١٦	٣
٧٥	١٤	۲ ٤	٣٧	المجموع الفعلي
	١٤	7.7	٣٣	المجموع المطلوب
	١.٠٠	1.17	٠.٨٩	معامل العمود

لاحظ أنه مرة أخرى، لا تتطابق مجاميع الأعمدة مع إجمالي العمود المطلوب، ثم يتم اشتقاق مجموعة من عوامل الأعمدة التي من المحتمل أن تصحح الموقف. يتم ضرب قيم عوامل العمود في أرقام خلية المصفوفة، مما يعطينا مصفوفة جديدة كالتالي:

معامل الصف	المجموع المطلوب	المجموع الفعلي	٣	۲	1	منشأ وجهة
٠.٩٠	١٤	10.51	۲	11.7.	1.77	1
17	44	٣٢.٢٦	٦.٠٠	٩.٣٦	17.9.	۲
1.08	۲۸	77.77	٦.٠٠	٧.٠٢	15.75	٣
		٧٥.٠٠	18	۲۸.۰۸	٣٢.٩٢	المجموع

مرة أخرى، يتم حساب إجمالي الصف وإجمالي العمود وتستمر العملية للمرة الثانية، مما ينتج عنه مصفوفة جيدة بما يكفي لأغراض التخطيط كما يلي:

المجموع	٣	۲	1	منشأ
				وجهة
١٤	۲	١.	۲	١
٣٣	٦	١.	١٧	۲
۲۸	٦	٧	10	٣
٧٥	١٤	77	٣٤	المجموع الفعلي
	١٤	۲۸	٣٣	المجموع المطلوب
	1	1. • £	٠.٩٧	معامل العمود

من الممكن الإستمرار في تكرار آخر والحصول على النتائج التالية:

المجموع	٣	۲	١	منشأ
				وجهة
١٤	۲	١.	۲	1
٣٣	٦	11	١٦	۲
۲۸	٦	٧	10	٣
٧٥	١٤	۲۸	٣٣	المجموع

بإختصار، يكون تقارب معامل العمود كما يلي:

٣	۲	1	ل العمود	معام
1	1.17	٠.٨٩	المحاولة	تكرار
1	١.٠٤	97	المحاولة	الاولى تكرار
				الثانية
1.•1	1	1.• ٤	المحاولة	تكر ار الثالثة

ويكون تقارب معامل الصف كما يلى:

٣	۲	1	ر الصف	معامز
1 £	1	٠.٦١	المحاولة	تكرار الأولى
٠.٩٨	17	٠.٠٩	المحاولة	تكرار الثانية
11	1	١.٠٤	المحاولة	تكرار الثالثة

يمكن للمخطط الإستمرار في التكرار حتى يقتنع بأن الوجهات المحسوبة تتطابق تقريبا" مع الوجهات المطلوبة. عموما، محاولتيين من التكرارات سوف تلبي الهدف.

M.A طريقة نموذج الجاذبية (Gravity Model)

يستمد نموذج الجاذبية قاعدته من قانون نيوتن للجاذبية، الذي ينص على أن القوة الجاذبة بين أي جسمين ترتبط ارتباطًا طرديا بكتلتيهما وترتبط عكسيًا بالمسافة بينهما. في نموذج الجاذبية، يرتبط عدد الرّحُلات بين منطقتين ارتباطًا مباشرًا بالأنشطة في المنطقتين، ويرتبط عكسيًا بالفصل بين المناطق بصفة دالة لزمن الرحلة.

تظهر صيغة نموذج الجاذبية كما في المعادلة التالية:

$$T_{ij}=rac{P_iA_jF(t)_{ij}K_{ij}}{\sum_{j=1}^nA_jF(t)_{ij}}$$
معادلة رقم

حيث أن:

 $_{ij}$ عدد الرحلات التي تم توليدها في النطاق $_{i}$ وجذبت إلى النطاق $_{ij}$

i الرحلات المتولدة من النطاق: P_i

i, الرحلات المنجذبة الى النطاق Ai

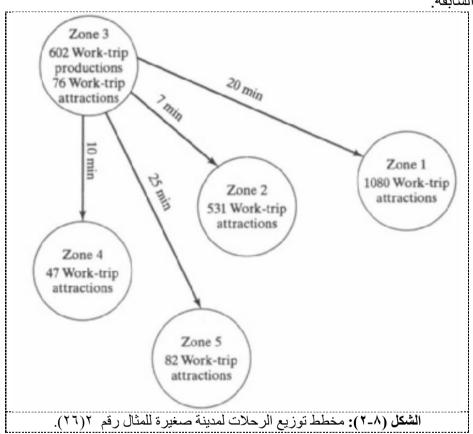
 $F(t)_{ij}$ عامل الإحتكاك لتبادل الرحلات $F(t)_{ij}$ عامل الإحتكاك لتبادل الرحلات $F(t)_{ij}$: نطاق المنشأ

j: نطاق الوجهة.

n: عدد النطاقات في منطقة الدراسة.

الخصائص الإقتصادية الاجتماعية للنطاقات. K_{ij}

ينص نموذج الجاذبية على أن الرحلات P_i المتولدة في النطاق j سيتم توزيعها على كل النطاقات أخرى j j وفقا" للجاذبية النسبية لكل نطاق j والوصولية النسبية لكل نطاق j j وهذا يعني: j وهذا يعني:


هذه النطاق j يحصل على جزء من توليد رحُلات النطاقات وفقا لخصائصها مقارنة بخصائص جميع النطاقات الأخرى في منطقة الدراسة. يؤدي هذا إلى مصطلح نموذج المشاركة، وغالبا ما يتم تطبيقه على نموذج الجاذبية والنماذج الأخرى التي لها هذه الخصائص.

في الممارسة العملية، يتم تطوير نموذج جاذبية منفصل لكل غرض رحلة، لأن أغراض الرحلة المختلفة لها خصائص توزيع مختلفة. قبل حساب عدد الرّحلات المتبادلة، يجب تحديد العديد من المعاملات ويتم تحديد زمن الرحلة بين كل زوج من النطاقات في منطقة الدراسة بواسطة عملية تعيين الرحلة.

المصطلح الأكثر عمومية الذي يستخدم لتمثيل زمن الرحلة (للفصل بين النطاقات) هو الإعاقة أو الاحتكاك. يمكن أن تمثل الإعاقة زمن الرحلة أو التكلفة أو المسافة أو مجموعة من العوامل. عمومًا، إن الإعاقة يمكن تعريفها هي مجموع مرجح لأنواع مختلفة من الأوقات (المشي، الانتظار، الركوب) وأنواع التكلفة (الأسعار، تكلفة التشغيل، الرسوم، تكلفة وقوف السيارات). في الماضي، تم استخدام زمن الرحلة في نموذج الجاذبية لقياس الفصل وتطوير عوامل الاحتكاك لتمثل بشكل أكثر دِقَة الفصل بين النطاقات.

معاملات أخرى مثل Kij يظهر الخصائص الاجتماعية والاقتصادية الفريدة للنطاقات المختلفة وهي الخصائص التي لم يتم حسابها بطريقة أخرى وكيف تؤثر هذه الخصائص على أنماط النقل في منطقة الدراسة. تؤثر عوامل التصحيح هذه على عدد الرّحُلات المتبادلة التي يحددها النموذج. مثلا عوامل الاحتكاك، يتم تحديد العوامل الاجتماعية والاقتصادية في عملية المعايرة ويجب استخدامها بحذر وفقط عندما يبرر حساب الخصائص الفريدة للمنطقة.

مثال رقم ۲ نحتاج إلى توزيع ۲۰۲ رحلة عمل من النطاق ۳ إلى النطاقات ۱ و ۲ و ٤ و ٥. تم تحديد عدد توليد رحلات العمل والمنجذبة في مرحلة توليد الرحلة (كما هو موضح في الشكل رقم (Y-1)). إن قيم $F(t)_{ij}$ تم الحصول عليها من البيانات السابقة

بن عامل الخصائص الإجتماعية والإقتصادية K_{ij} لا يستخدم في هذا المثال وتحسب الرحلات T_{ii} على النحو التالى:

T_{ij}	$A_j F(t)_{ij}$	$F(t)_{ij}$	الإعاقة (دقيقة)	جذب الرحلات <i>A</i>	الى النطاق	من النطاق
١٤٧	ገ ٤ 人 •	7	۲.	١٠٨٠	•	٣
٣٥.	10899	۲۹	٧	071	۲	٣
٧٨	٣٤٢٠	٤٥	٥	٧٦	٣	٣
19	٨٤٦	١٨	١.	٤٧	٤	٣
٨	777	٤	70	٨٢	0	٣
7.7	77577					المجموع

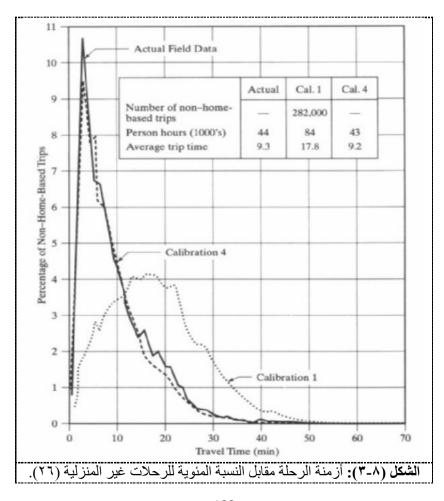
كما موضح في الجدول أعلاه إن الحسابات نوعا ما بسيطة ويمكن أن تكون معقدة ومرهقة. هناك عدة خطوات أخرى ضرورية، مثل موازنة عوامل الجذب للتأكد من أن نموذج الجاذبية لا يوزع رِحْلات إلى نطاق أكثر مما يجذبه وفقا لتحليل توليد الرحلة.

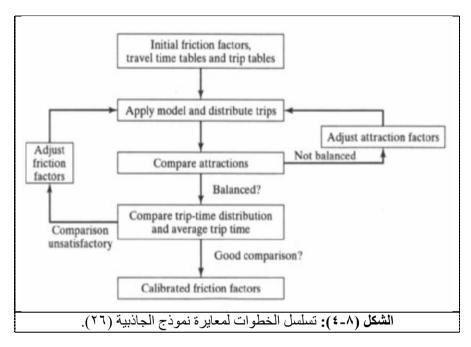
٨.٤ معايرة نموذج الجاذبية (Calibrating a Gravity Model

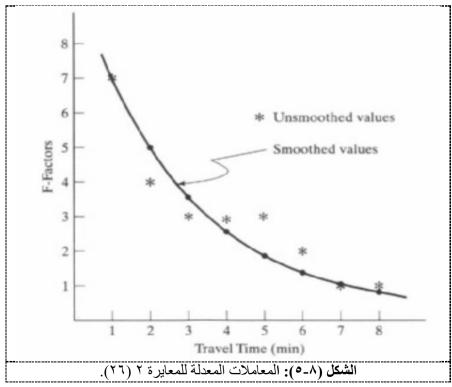
تتم معايرة نموذج الجاذبية بواسطة تطوير عوامل الاحتكاك وتطوير عوامل الخصائص الاجتماعية والاقتصادية. كما لوحظ من قبل، تظهر عوامل الاحتكاك تأثير زمن الرحلة للإعاقة على القيام بالرحلة. يتم اعتماد عملية المحاولة والخطأ عموما للتصحيح. ويتم استخدام المعاملات من دراسة سابقة في منطقة حضرية مماثلة

يتم استخدام ثلاث عناصر كمدخلات لنموذج الجاذبية للمعايرة:

- جدول التوليد والجذب للرحلات حسب كل غرض.
- ٢. أزمنة الرِّحْلات لجميع النطاقات، بما في تلك الأزمنة داخل النطاق.
 - عوامل الاحتكاك الأولية لكل زيادة في زمن الرحلة.


بشكل أساسي، تتضمن عملية المعايرة ضبط معامل الاحتكاك حتى يقتنع المخطط بأن النموذج يعيد توليد توزيع الرحلة بشكل كاف كما يمثله جدول الإدخال لبيانات للرحلة، ويتفق جدول رحلة النموذجات بشكل كبير مع الجدول من بيانات المسح، باستخدام مؤشرات مثل التوزيع التكراري زمن الرحلة ومتوسط زمن الرحلة. إن العملية موضحة كما يلي:


- ١. استخدم نموذج الجاذبية لتوزيع الرّحْلات بناءًا على المدخلات الأولية.
- ٢. إجمالي مناطق جذب الرّحُلات في جميع النطاقات j ثم تتم مقارنة تلك
 الرّحُلات التي تم الحصول عليها من المدخلات (الحقلية) في جدول الرحلة.
- ٣. يتم إعادة تشغيل النموذج حتى يتم توازن عوامل الجذب المحسوبة والحقلية بشكل معقول.


يمكن استخدام جدول الرحلة وجدول مدخلات زمن الرحلة للمقارنة: توزيع تكرار زمن الرحلة ومتوسط زمن الرحلة. إذا كانت هناك اختلافات كبيرة، تبدأ وتعاد العملية مرة أخرى.

يوضح الشكل رقم (٨-٣) نتائج أربعة تكرارات تقارن تكرار زمن الرحلة. يهدف مخطط التدفق (الشكل رقم (٤-٨)) إلى توضيح تسلسل الخطوات اللازمة لمعايرة نموذج الجاذبية. ويوضح الشكل رقم (٨-٣) مثال لقيم لمعامل F. لاحظ أنه، بشكل عام، تنخفض قيم F مع زيادة زمن الرحلة، وقد تأخذ الشكل t^{-1} , t^{-2} , e^{-t} . كما ذكرنا سابقا"، فإن المصطلح الأكثر عمومية للإستخدام ولتمثيل زمن الرحلة (أو مقياس الفصل بين النطاقات) هو الإعاقة، ويمكن كتابة العلاقة بين مجموعة من عوامل الإعاقة W والإحتكاك F على النحو التالى:

رد (٤-۸) معادلة $F_{ij}=1/W^c_{ij}$

مثال رقم ٣ تمت معايرة نموذج الجاذبية بالنتائج التالية:

معامل الإعاقة (زمن الرحلة، دقيقة)	٤	٦	٨	11	10
W					
معامل الإحتكاك F		٠.٠٢٩	70	71	٠.٠١٩

بإستخدام F المتغير التابع، إحسب المعلمات A و C من المعادلة: $F = A/W^c$

الحل: يمكن كتابة المعادلة على النحو التالي:

lnF = lnA - clnW

 $lnW = 1.39 \ 1.79 \ 2.08 \ 2.40 \ 2.27$

$$lnF = -3.35 - 3.54 - 3.86 - 3.96$$

تنتج هذه الأرقام القيم التالية لـ $A = V \cdot \cdot \cdot \cdot = 0$ و $A \cdot \cdot$ بالتالى،

 $F = 0.07/W^{0.48}$

مثال رقم ٤ أ مدينة لها أربع نطاقات إثنان منها A و B، تولد ٧٢٥ و ٥٧٥ رحلة على التوالي. تذهب هذه الرحلات إلى نطاقات العمل C و D، وتجذب ٨٧٥ و ٤٢٥ رحلة على التوالي. إن زمن الرحلة، بالدقائق، بين النطاقات هو ٨=AB و ١٠= BC و ١٠= BC و ١٥= ١٠ عوامل الإحتكاك كما يلي ٩٠ و ٦٠ و ٥٠ و ١٠ على التوالي، مأخوذة من نموذج الجاذبية. إن العامل الإجتماعي والإقتصادي $1 = K_{ii} = 1$. ماهو توزيع الرحلات؟

الحل: يجب أن تكون الرحلات المتولدة مساوية للمنجذبة: $A + B = 725 + 575 = 1300 \ trips \ produced$ C + D = 875 + 425 = 1300 trips produced

$$T_{ij} = \frac{P_i A_j F(t)_{ij} K_{ij}}{\sum_{j=1}^n A_j F(t)_{ij}}$$

$$T_{AB} = \frac{725 \times 875 \times 90 \times 1}{(875 \times 90 \times 1) + (425 \times 10 \times 1)} = 688$$

$$T_{AD} = \frac{725 \times 425 \times 10 \times 1}{(875 \times 90 \times 1) + (425 \times 10 \times 1)} = 37$$

$$T_{BC} = \frac{575 \times 875 \times 60 \times 1}{(875 \times 60 \times 1) + (425 \times 50 \times 1)} = 409$$

$$T_{BD} = \frac{575 \times 425 \times 50 \times 1}{(875 \times 90 \times 1) + (425 \times 10 \times 1)} = 166$$

الرحلات	K_{ij}	F_{ij}	زمن الرحلة (دقيقة)	المسار
٦٨٨	١	9.	٨	AB
٣٧	١	١.	10	AD
٤٠٩	١	٦٠	1.	BC
١٦٦	1	٥,	١٣	BD

ب. يشير مسح المنشأ والوجهة الذي تم إجراؤه لهذه المدينة إلى أن عدد الرحلات على كل مسار كان على النحو التالي: AD مسار كان على النحو التالي: F_{ij} الجديد من أجل تصحيح حركات الرحلة الفعلية.

الحل<u>:</u>

الجديد F _{ij}	القديم F _{ij}	(OD)/GM%	لمحسوبة ة نموذج اذبية GM	بواسطا الج	ئىأ-وجهة نلات (O)	الرح	المسار
٨٥	٩.	٠.9٤	٥٢.٩	٦٨٨	٥,	70.	AC
71	١.	۲٧	۲.۸	٣٧	٥.٨	٧٥	AD
٥٩	٦.	٠.٩٨	٣١.٥	٤٠٩	٣٠.٧	٤٠٠	ВС
٥٣	0.	10	۱۲.۸	١٦٦	17.0	170	BD
		ı	١	17	١	17	المجموع

$$T_{AC} = \frac{\frac{725 \times 875 \times 85 \times 1}{(875 \times 85 \times 1) + (425 \times 21 \times 1)}}{(875 \times 85 \times 1) + (425 \times 21 \times 1)} = 647$$

$$T_{AC} = \frac{\frac{725 \times 425 \times 21 \times 1}{(875 \times 85 \times 1) + (425 \times 21 \times 1)}}{\frac{575 \times 875 \times 59 \times 1}{(875 \times 59 \times 1) + (425 \times 53 \times 1)}} = 400$$

$$T_{AC} = \frac{\frac{575 \times 425 \times 53 \times 1}{(875 \times 59 \times 1) + (425 \times 53 \times 1)}}{\frac{575 \times 425 \times 53 \times 1}{(875 \times 59 \times 1) + (425 \times 53 \times 1)}} = 175$$

إن النتائج المستمدة بإستخدام قيمة F_{ii} الجديد تبدو مرضية.

مثال رقم ٥ تحتوي المدينة المكونة من ثلاث نطاقات على الرحلات التالية التي تم توليدها ذبها إلى النطاقات الثلاث على النحو التالي:

المجموع	٣	۲	1	النطاق
9	•	۲.,	٧.,	P_i الرحلات المتولدة
9	0	٤٠٠	•	الرحلات المنجذبة A

إن معامل الإحتكاك والإعاقة تم معايرتها كالتالي:

٨	٦	٤	۲	معامل الإعاقة (زمن الرحلة بالدقيقة)
0	7	\	١.	F_{ij} معامل الإحتكاك

زمن الرحلة (دقيقة)					
٣	*	1	الوجهة		
			المنشأ		
٦	٤	۲	1		
٨	۲	٤	۲		
۲	٨	٦	٣		

 $K_{ii} = 1$ إحسب توزيع الرحلات بين النطاقات، على إفتراض

<u>الحل:</u> المحاولة الاولى (m=1):

$$T_{ij} = \frac{P_i A_j F(t)_{ij} K_{ij}}{\sum_{j=1}^n A_j F(t)_{ij}}$$

$$T_{1-1} = \frac{(700) \times (0) \times (10)}{[(0) \times (10) + (400) \times (7) + (500) \times (6)]} = 0$$

$$T_{1-2} = \frac{(700) \times (400) \times (7)}{[5800]} = 338$$

$$T_{1-3} = \frac{(700) \times (500) \times (6)}{[5800]} = 362$$

$$T_{2-1} = \frac{(200) \times (0) \times (7)}{[(0) \times (7) + (400) \times (10) + (500) \times (5)]} = 0$$

$$T_{2-2} = \frac{(200) \times (400) \times (10)}{[6500]} = 123$$

$$T_{2-3} = \frac{(200) \times (500) \times (5)}{[6500]} = 77$$

الرحلات من نطاق الى نطاق: المحاولة الأولى:

المجموع	٣	*	١	الوجهة
٧	777	٣٣٨	•	,
۲.,	**	١٢٣	•	4
•	•	•	•	٣
9	٤٣٩	٤٦١	•	المجموع

9	٤٣٩	٤٦١	•	المحسوبة A_1
9	0	٤٠٠	•	المعطاة A_j

لاحظ أنه على الرغم من أن مجموع توليد الرحلة ومجموع رحلات الجذب يصل إلى 9.9. إن إجمالي جاذبية الرحلة A_i لا تساوي رحلات الجذب المطلوبة. لذلك،

هناك حاجة إلى مزيد من محاولات التكرار. يمكن حساب عوامل الجذب المعدلة و فقا للتعبير التالي:

$$A_{jk} = [A_j. A_{j(k-1)}]/C_{j(k-1)}$$

حيث أن: A_{ik} : معاملات الجذب المعدلة لنطاقات الجذب (العمود) i, المحاولة i

 $A_i = A_k$ when k = 1

 $C_{i\nu}$: الجذب الفعلى (العمود) المجموع للنطاق i

 \dot{A}_i : مجموع الجذب المطلوب لنطاق الجذب (العمود)

j=1,2,3,...,n : j=1,2,3,...,n

n: عدد النطاقات

K=1,2,3,...,m : k=1,2,3,...,m

m:عدد المحاه لات

إحسب عوامل الجذب المعدلة و فقا للصبغة التالية:

$$A_{jk} = [A_j, A_{j(k-1)}]/C_{j(k-1)}$$

$$A_1=0$$
 ، نطاق ۱: لاتحتاج معامل تصحیح $A_2=400 imes rac{400}{461}=347$: نطاق ۲: $A_3=500 imes rac{500}{400}=569$: نطاق ۳: $A_3=500 imes rac{500}{400}=569$

المحاولة الثانية (m=2):

$$\begin{split} T_{1-1} &= \frac{(700)\times(0)\times(10)}{[(0)\times(10)+(347)\times(7)+(569)\times(6)]} = 0 \\ T_{1-2} &= \frac{(700)\times(3470)\times(7)}{[5843]} = 291 \\ T_{1-3} &= \frac{(700)\times(569)\times(6)}{[5843]} = 409 \\ T_{2-1} &= \frac{(200)\times(0)\times(7)}{[(0)\times(7)+(347)\times(10)+(569)\times(5)]} = 0 \\ T_{2-2} &= \frac{(200)\times(347)\times(10)}{[6315]} = 110 \\ T_{2-3} &= \frac{(200)\times(569)\times(5)}{[6315]} = 90 \end{split}$$

الرحلات من نطاق الى نطاق: المحاولة الثانية:

المجموع	٣	4	١	الوجهة المنشأ
٧	٤٠٩	791	•	,
۲	٩.	11.	•	۲
•				٣
9	٤٩٩	٤٠١	•	المجموع

9	£ 99	٤٠١		A ₂ المحسوبة
9	٥.,	٤٠٠	•	المعطاة A_j

تقارب قيم رحلات الجذب المحسوبة من الجذب المعطاة (الحقلية). وتستمر هذه العملية عادة حتى يكون هناك تقارب معقول بين القيم المحسوبة بإستخدام نموذج الجاذبية والقيم المعطاة.

الفصل التاسع نمذجة التقسيم لوسائط النقل

Modal Split Analysis) ا تحليل تقسيم وسائط النقل

في هذه المرحلة من عملية تنبؤ الطلب على النقل، نحلل قرارات الأشخاص فيمًا يتعلق بنماذج النقل، يتم تحليل المركبات والحافلات وما إلى ذلك. في المخطط الانسيابي لعملية التنبؤ بالطلب على النقل، يأتي استخدام وسائط النقل بعد مرحلة توزيع الرحلة. مع ذلك، يمكن إجراء تحليل استخدام الوسائط ضمن تحليل توليد الرحلة. إن النقطة أكثر حدوثًا هي تحليل تقسيم الوسائط يأتي بعد نموذج التوزيع للرحلات لأن المعلومات حول المكان الذي تسير فيه الرّحلات تسمح لعلاقة استخدام الوسائط بمقارنة خِدْمَات النقل البديلة التي يتنافس عليها المستخدمين.

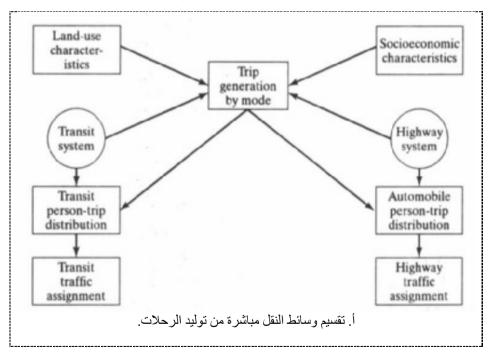
قبل أن نتمكن من التنبؤ بكيفية تقسيم الوسائط المتاحة للمستخدمين، يجب علينا تحليل العوامل التي تؤثر على خيارات الأشخاص. يتم النظر في ثلاث فئات واسعة من العوامل في استخدام الوسائط:

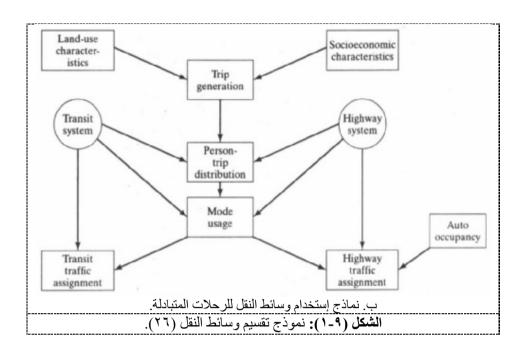
1. خصائص صانع الرحلة (مثل دخل الأسرة، وعدد المركبات المتاحة، وحجم الأسرة، والكثافة السكنية).

٢. خصائص الرحلة (مثل مسافة الرحلة والوقت من اليوم).

٣. خصائص نظام النقل (مثل وقت الركوب ووقت الوصولية الإضافي لوسائط النقل).

ينظر المخطط في كيفية تفاعل هذه الخصائص للتأثير على اختيار وسائط النقل. عندما يتم اكتشاف العلاقات، يمكن للمخطط التنبؤ بكيفية اختيار سكان المستقبل من بين الوسائط التي ستكون متاحة. عمومًا، في هذه المرحلة من عملية التنبؤ، يتم إيلاء بعض الاعتبار للتنبؤ بعدد الركاب في المركبات لأولئك الذين يختارون هذا النوع من وسائط النقل. يمكن تضمين هذا الاعتبار للإشغال أما في علاقة استخدام وسائط النقل مع اعتبار كل مستوى من مستويات الإشغال نموذجًا منفصلًا، أو قد يتم تطوير علاقة منفصلًا.


(Direct-Generation تقسيم وسانط النقل مباشرة من توليد الرحلات Usage Modes)


يُوضح الشكل رقم (٩-١-أ) كيفية توجيه توليد الرّحْلات في استخدام ثنائي وسائط النقل العام. يتم توزيع النقل : توليد رحْلات المركبات الخاصة ورحلات وسائط النقل العام. يتم توزيع

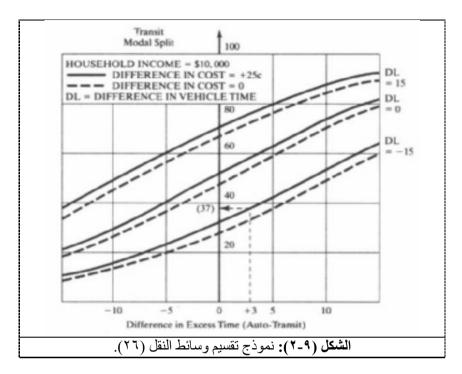
الرّحْلات التي تم إنشاؤها بواسطة وسائط النقل إلى وجهاتهم ويتم تعينيها لشبكات الطرق السريعة وشبكة مسارات النقل العام. هذا النهج مناسب عمومًا للمناطق الحضرية الأصغر حجما التي لا تتوفر فيها خِدْمَات نقل عام رئيسية. إن المعادلات التي تربط الرّحْلات إلى عدد السكان، معدل دخل الأسرة، والمركبات، قد تأخذ الشكل التالي:

$$p(transit) = A + b(Population) - C(Income)$$

 $p(auto) = A + b(Population) - C(Auto)$

هناك طريقة أخرى لتطوير نموذجات التوليد المباشر وهي استخدام نموذجات توليد الرّحْلات التي تولد إجمالي الرّحْلات، على غرار ما تم شرحه تحت تحليل الفئات في الفصل السابع، ثم تطوير جداول التصنيف للفئات للمناطق التي يخدمها النقل العام. إن الجدول (٩-١) يوضح حساب رحْلات النقل العام، حيث إن زيادة مستوى الدخل وتوفر المركبات يؤدي إلى إن استخدام النقل العام تقريبًا صفر وهذا منطقي. يمكن تحويل هذه الجداول إلى رسوم للاستخدام العام.

جدول (٩-١): حساب رحلات النقل العام مع تحليل الفئة (٢٦).


		Autos Ava	ilable
Income (thousands of dollars)	0	1	2 or More
Total p	erson-trips p	er househol	d
≤ 6	3.0	5.0	_
6-9	4.0	6.0	9.0
9-12	5.0	7.5	10.5
12-15	_	8.5	11.5
> 15	_	8.5	12.7
Total transit trips produce	ed per house	hold in areas	with transit service
≤ 6	2.1	0.7	0.4
6-9	1.3	0.4	0.3
9-12	0.5	0.2	0.1
12-15	0.2	0.1	0.0
> 15	0.1	0.0	0.0

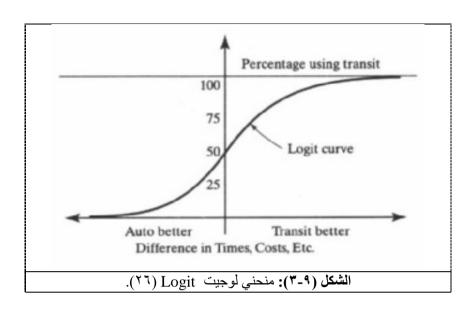
(Trip-Interchange نماذج إستخدام وسائط النقل للرحلات المتبادلة Mode Usage Models)

يوضح الشكل رقم (٩-١-ب) نموذجات تبادل الرّحْلات في عملية التنبؤ بالنقل. تستخدم نموذجات استخدام وسائط النقل للرحلات المتبادلة بعد مرحلة توزيع الرحلة. يتم استخدام الدخل وتوافر المركبات والغرض من الرحلة على نطاق واسع في هذه النموذجات، ثمّ إن المحلل لديه مقياس قوي لخصائص نظام النقل على سبيل المثال، نموذجًا يستخدم فيه دخل الأسرة خاصية لصنع الرحلة. وأيضا يستخدم الغرض من الرحلة وتوجيه الرحلة (إلى منطقة مركزية تجارية أو أي مكان آخر) كخصائص رحلة. يتم وصف خصائص نظام النقل من حيث الفرق في الكلفة والوقت داخل المركبة والوقت الإضافي للوصولية لكل النطاقات في منطقة الدراسة.

يوضح الشكل (٩-٢) رِحْلات العمل في منطقة أعمال مركزية التي يقوم بها الأشخاص الذين يبلغ دخل الأسرة ١٠٠٠٠ دولار. الرِّحْلات غير المتعلقة بالمنطقة المركزية التجارية ذات الأغراض الأخرى والرحلات التي يقوم بها الأشخاص ذوي الدخل المختلف سيكون لها منحنيات مختلفة. تتم قراءة الشكل (٩-٢) على النحو التالي:

- الزمن المستغرق في المركبة هو ١٥ دقيقة أقل من الزمن المستغرق في النقل العام (الفرق ١٥ دقيقة).
- تكلفة استخدام المركبات ٢٠ سنت أكثر من استخدام النقل العام (الفرق ٢٠,٠٥٠).
 - ٣. الزمن الإضافي للمركبات هو ٣ دقائق أكثر من النقل العام (الفرق ٣).
 - ٤. لذلك، فإن ٣٧ ٪ من الرَّحْلات ستكون عن طريق استخدام النقل العام.

نموذج استخدام وسائط النقل للرحلات المتبادلة مناسب لأي منطقة حضرية مع أي مستوى من استخدام النقل العام. وهو الأنسب في المناطق الحضرية الأكبر ذات المستوى المناسب من استخدام النقل العام، في الأقل في بعض المناطق. إن المصطلح لوجيت (Logit) يشير إلى S-منحني اللوجتي الموضح في الشكل (٩-٣)، يستخدم لملائمة بيانات النموذج. إن صياغة لوجيت هو نموذج مشترك (كما كان نموذج الجاذبية) يقسم الأشخاص بين وسائط النقل المختلفة اعتمادًا على الرغبة النسبية في كل واسطة نقل الأي رحلة معينة.


كلما كانت وسيلة النقل أفضل، زادت فائدته المحتملة للمستخدم. يأخذ نموذج اللوجيت الشكل التالي للمقارنة بين الفائدة النسبية للوسائط المختلفة: احتمال استخدام وسيلة النقل الإولى P, ، i، ويتم إعطاؤه كما في المعادلة التالية:

را-٩) معادلة
$$P_i = rac{e^{V(i)}}{\sum_{i=1}^n e^{V(r)}}$$

رث أن: $e^{V(i)}$ النقل $e^{V(i)}$

V(r) فائدة و سيلة النقل

n: عدد وسائل النقل المأخوذة في الإعتبار.

مثال رقم 1 دالة المنفعة المعايرة لوسيلة النقل الخاص والعام كما يلي: $V_a = -0.3 - 0.04X - 0.1Y - 0.03C$ $V_t = -0.04X - 0.1Y - 0.03C$ emulia literal literal

حيث إن:

.V: دالة المنفعة لوسيلة النقل i.

X: زمن الرحلة في المركبة.

Y: زمن الرحلة خارج المركبة.

كلفة النقل/الدخل

تتميز النطاقات بالخصائص التالية:

النقل العام	النقل الخاص	
٤٠	10	زمن الرحلة في المركبة (دقيقة)
١.	٥	زمن الرحلة خارج المركبة (دقيقة)
٧٥	٣٠٠	كلفة النقل (cent)

ما هو إحتمال أن الشخص الذي يبلغ دخله ١٠٠٠٠\$ يتنقل بواسطة النقل العام؟

<u>الحل:</u>

$$V_a = -0.3 - 0.04(15) - 0.1(15) - 0.03\left(\frac{300}{10000}\right) = -1.4$$

$$V_t = -0.04(40) - 0.1(10) - 0.03\left(\frac{75}{10000}\right) = -2.6$$

إن إحتمالية صنع الرحلة بواسطة النقل العام:

$$P_i = \frac{e^{V(i)}}{\sum_{i=1}^n e^{V(r)}} = \frac{e^{-2.6}}{e^{-2.5} + e^{-1.4}} = 0.23 \text{ or } 23\%$$

مثال رقم ٢ إن دالة المنفعة المعايرة للنقل في مدينة متوسطة الحجم عن طريق المركبات والحافلات والسكك الحديدية الخفيفة هي:

$$U = a - 0.002X_1 - 0.05X_2$$

حيث إن:

ر (cent) كُلُفة النقل: X_1

 X_2 : زمن الرحلة (دقيقة).

إحسب تقسيم وسائط النقل للقيم أدناه:

X_2	X_1	а	وسيلة النقل
70	17.	۰.۳۰-	المركبات الخاصة
٣٥	٧٥	٠.٣٥_	الحافلات
٤٠	٩.	٠.٤٠-	السكك الحديدية الخفيفة
			الخفيفة

إذا تم فرض رسوم على وقوف المركبات حوالي ١,٠٠٠ لكل رحلة، كيف يكون التقسيم بالنسبة الى وسائط النقل الأخرى؟

$$U_a = -0.3 - 0.002(130) - 0.05(25) = -1.81$$
 وسيلة النقل الخاص: $U_b = -0.35 - 0.002(75) - 0.05(35) = -2.25$ وسيلة النقل العام: $U_b = -0.35 - 0.002(75) - 0.05(35) = -2.25$ وسيلة النقل القطار الحديد الخفيف:

$$U_l = -0.40 - 0.002(90) - 0.05(40) = -2.58$$

%	P	e^u	u	وسيلة النقل
٤٨	•. ٤٧٥	٠.١٦٤	1.41-	المركبات الخاصة
٣.	٠.٣٠٤	.1.0	7.70-	الحافلات
77	٠.٢٢١	٠.٠٧٦	۲.٥٨_	السكك الحديدية الخفيفة
١	1	1.750		المجموع

إذا كان إجور الوقوف للمركبات حوالي 1,٠٠\$ لكل رحلة، U_a تصبح كالتالي: $U_a = -0.3 - 0.002(230) - 1.25 = -2.01$

%	P	e^u	u	
٤٣	1.270	٠.١٣٤	۲. ۰ ۱ -	المركبات الخاصة
44	•_٣٣٣	.1.0	7.70-	الحافلات
۲ ٤	7 £ 7	٠.٠٧٦	۲.٥٨_	السكك الحديدية الخفيفة
١	1	٠.٣١٥		المجموع

إن إجرة مواقف المركبات السطحي بقيمة ١,٠٠ دولار يحدث فرقا" بنسبة ٥ ٪ في عدد الركاب للنقل الخاص.

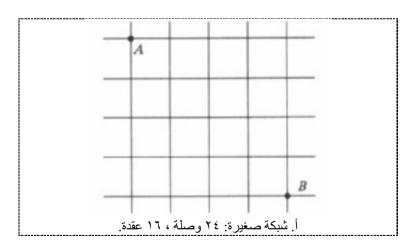
الفصل العاشر نمذجة تعيين مسار الرحلة

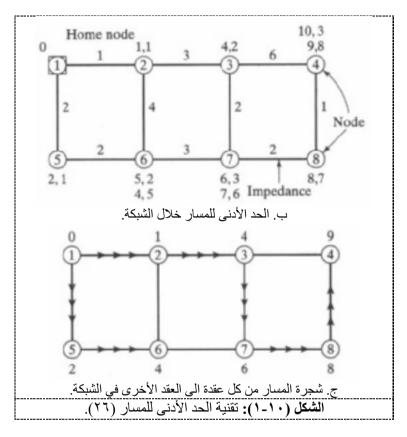
(Trip Assignment) تعيين مسار الرحلة

إن تعيين مسار الرحلة هي الطريقة التي يتنبأ به المخطط بالمسارات التي ستتخذها الرّحُلات. على سبيل المثال، إذا انتقلت رحلة من ضاحية إلى وَسَط المدينة، فإن النموذج يتنبأ بالشوارع المحددة أو الطرق التي سيتم استخدامها. تبدأ عملية تعيين الرحلة ببناء خريطة تمثل شبكات الطرق للنقل العام والخاص في منطقة الدراسة وتعرض هذه الخرائط شبكة المسارات المحتملة التي يمكن أن تسلكها الرّحُلات. يتم تحديد التقاطعات (تسمى العقد) على خريطة الشبكة، بحيث يمكن تحديد المقاطع بينها (تسمى الروابط أو الوصلات). بعد تحديد الروابط بواسطة العقد، يتم تحديد الطول وأنواع المنشأة والموقع في المنطقة وعدد الممرات والسرعة وزمن الرحلة لكل رابط.

إذا كان النقل العام متاحا، يتم تضمين معلومات إضافية، التي تحدد الأجرة والطرق الرئيسية (التقادم الزمني بين الحافلات أو القاطرات) وأوصاف المسار، على شبكة منفصلة. تسمح هذه المعلومات للحاسوب بتحديد المسارات التي قد يسلكها المسافر بين أي نقطتين على الشبكة وتعيين الرحلات بين النطاقات لهذه المسارات. يظهر ناتج تحليل تعيين الرحلة المسارات التي ستستغرقها جميع الرحلات، ثم عدد المركبات على كل طريق وعدد الركاب على كل مسار للنقل العام.

باستخدام هذه التحليلات لتوليد الرحلة، توزيع الرحلة، تقسيم وسائط النقل، وتعيين الرحلة، يمكن للمخطط الحصول على تقديرات واقعية لتأثيرات السياسات والبرامج على الطلب على النقل، يمكن للمخطط تقييم أداء أنظمة النقل البديلة وتحديد التأثيرات المختلفة التي سيحدثها النظام على المنطقة الحضرية، مثل استخدام الطاقة والتلوث والحوادث. بواسطة المعلومات حول كيفية أداء أنظمة النقل وحجم آثارها، يمكن للمخططين تزويد صانعي القرار ببعض المعلومات النقل.

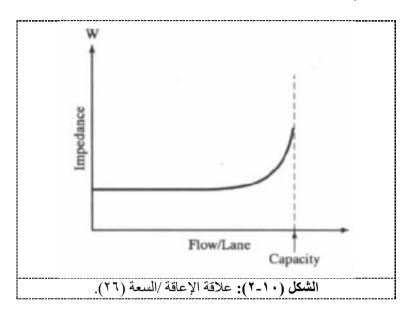

(Trip Assignment Procedures) طرق تعيين مسار الرحلة


تتوفر العديد من التقنيات لتحديد المسارات على الشبكة بواسطة تعيين الرّحُلات بين النطاقات. يتم مناقشة طريقتين:

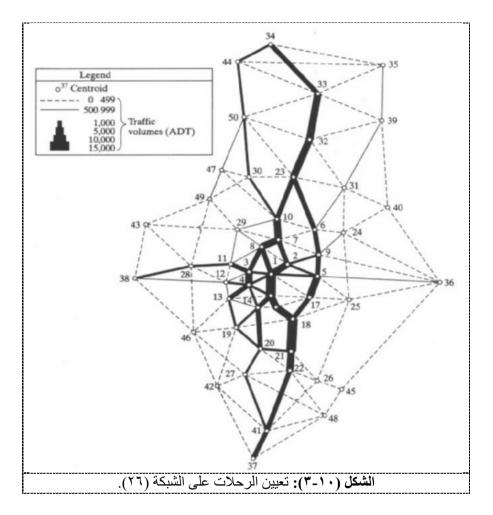
- الحد الأدنى للمسار.
- الحد الأدنى للمسار مع تقييد السَّعة.

(Minimum Path Technique) تقنية الحد الأدنى للمسار المسار

تعتمد تقنيات الحد الأدنى للمسار على إفتراض أن المستخدمين يرغبون في إستخدام الحد الأدنى للإعاقة المسار بين نقطتين. كان لابد من تطوير طرق فعالة لتحديد الحد الأدنى من المسارات لأن القرارات اليدوية ستكون شبه مستحيلة. الشكل رقم (١٠١-أ) يوضح إختبار ٤٠ مسارا" مختلفا" لتحديد الحد الأدنى بين A و B يمكن تخيل مشكلة العثور على أقصر مسار في الشبكة مع آلاف الروابط والعقد. إن الخوارزمية المستخدمة الأكثر شيوعا" هي خوارزمية Moors. وترد تفاصيل الخوارزميات في النصوص القياسية لمصادر كثيرة ذات الصلة. عند إستخدام خوارزمية مقادة الأخرى. يؤدي تحديد الحد الأدنى للمسارات عن طريق الإنتقال من الأصل إلى جميع العقد الأخرى إلى شجرة مقشدة Skim tree من العقدة رقم الي جميع العقد الأخرى كما موضح في الشكل (١٠١-١-ب) و (١٠١-١-ج).


بمجرد العثور على الحد الأدنى من المسارات، يتم تحميل الرّحْلات بين المناطق على الروابط التي تشكل الحد الأدنى للمسار. يشار إلى هذه التقنية أحيانا باسم" الكل أو لا شيء"، لأن جميع الرّحْلات بين البداية والوجهة يتم تحميلها على الروابط التي تقارن الحد الأدنى للمسار ولا يتم تحميل أي شيء على الروابط الأخرى. بعد النظر في جميع التقاطعات الممكنة، تكون النتيجة حساب لحجم كل رابط في الشبكة. يمكن أن تتسبب هذه الطريقة في تخصيص حجم رحْلات أكبر لبعض الروابط من سَعَة الرابط بالسرعة المفترضة الأصلية. وأدت مشكلة الحجم / السَّعَة إلى وضع إجراءات لتعيين الرّحْلات مع مراعاة القيود المفروضة على السَّعَة الاستيعابية.

(Minimum Path with تقنية الحد الأدنى للمسار مع تقييد السعة Capacity Restraints Technique)


تعتمد تقنيات تقييد السعة على إكتشاف أنه مع زيادة تدفق حركة المرور، تنخفض السرعة. هناك علاقة بين الإعاقة والتدفق المروري لجميع أنواع الطرق. تظهر هذه العلاقة بيانيا" في الشكل (١٠-٢). تقوم عملية تعيين الرحلة بتعيين الرحلات

وفقا" للإعاقات المعينة على روابط الشبكة. نتيجة هذه العملية هي تدفق حركة المرور على كل رابط من الشبكة.

نظرا لوجود علاقة مباشرة بين زمن الرحلة (أو السرعة) على الرابط والحجم المروري الموجود على الرابط، تم تطوير عملية للسماح بأخذها في الإعتبار في هذه العلاقة. وتسمى العملية تقييد السعة. يحاول تقييد السعة تحقيق التوازن بين الحجم المروري المخصص وسعة المنشأ والسرعة ذات الصلة.

هناك عدة طرق لاستخدام تقييد السعة في تعيين الرحلة. الطريقة أكثر حدوثا هي ببساطة تحميل الشبكة وتصحيح السرعات المفترضة بعد كل تحميل لتظهر قيود الحجم/ السعة. تتم عمليات التحميل والتعديلات هذه بشكل تدريجي حتى يتم الحصول على توازن بين السرعة والحجم والسعة. أظهرت التجربة أنه يمكن الحصول على توازن معقول بعد ثلاث أو أربع عمليات تحميل. يجب أن يؤدي هذا التعيين إلى تمثيل أكثر واقعية لحركة المرور على الشبكة وهو الأن قيد الاستخدام على نطاق واسع إلى حد ما. بغض النظر عن التقنية المستخدمة، ينتج إجراء تعيين الرحلة على الطريق حسابات لحجم المرور على كل رابط في الشبكة. يوضح الشكل رقم (١٠-٣) تمثيلا رسومي لشبكة محملة بالرحلات.

يتعامل تقييد السعة مع الروابط المحملة في الشبكة. وتم إقتراح عدة طرق وتقنيات وغالبا" ما تستخدم طريقة بيرو (BPR) حيث يتم تمثيل علاقة زمن الرحلة المعتمدة على تدفق الحجم المروري بواسطة دالة متعددة الحدود كما المعادلة التالية:

$$T_Q = T_0 [1 + \alpha \left(\frac{Q}{Q_{max}}\right)^{\beta}]$$
معادلة (۱-۱۰)

حيث أن:

Q: زمن الرحلة لتدفق مروري : T_{O}

نرمن الرحلة عند الندفق المروري المساوي لصفر. T_0

ويكون مساوي لـ= زمن الرحلة لسعة عملية * ٨٧.٠

Q: التدفق أو الحجم المروري، (مركبة/ساعة).

السعة العملية= 3/4 * التدفق المشبع : Q_{max}

α، β: معاملات

إفرض رابط طوله ۱ ميل، له سعة عملية ٤٠٠٠٠ مركبة/اليوم وسرعة ٤٠٠٠٠ ميل/ساعة.

زمن الرحلة عند هذا التدفق =٥.١ دقيقة

زمن الرحلة، $T_0 = T_0 \cdot 1.$ دقيقة

لكن بعد تحميل الرابط، وجد إنه تم تعيين تدفق المروري عليه بقيمة $\alpha = 1.00$ مركبة/يوم، إفرض المعاملات 1.5 $\alpha = 0.00$

$$T_Q = 1.31 \left[1 + 0.15 \left(\frac{60000}{40000} \right)^4 \right] = 2.3 \text{ min.}$$

هذا يؤدي الى سرعة تشغيلية ٢٦ ميل/ساعة حيث تتنقل ٢٠٠٠٠ مركبة يوميا".

إقترح ديفيدسون (١٩٦٦) إستخدام دالة يعطي علاقة زمن الرحلة مماثلة لصيغة BPR:

$$T_Q = T_0 rac{1 - (1 - au)Q/Q_{max}}{1 - Q/Q_{max}}$$
معادلة (۲-۱۰)

حيث أن:

Q زمن الرحلة لتدفق مروري: T_{O}

نرمن الرحلة عند التدفق المروري المساوي لصفر. T_0

Q: التدفق أو الحجم المروري، (مركبة/ساعة).

التدفق المشبع (مركبة/ساعة). Q_{max}

ت معامل مستوى الخدمة. au

يرتبط معامل مستوى الخدمة τ بنوع الطريق وعرض الطريق وتكرار الإشارات الضوئية وعبور المشاة والمركبات المتوقفة. يقترح Blunden and black (١٩٨٤) $\tau = -1$ إلى ٢,٠ للطرق السريعة و ٤,٠ إلى ٦,٠ للشرايين الحضرية و ١ إلى ١,٥ للطرق التجميعية.

مثال رقم ۱ يبلغ طول مقطع لطريق سريع ۱۰ أميال وسرعة تدفق حرة تبلغ ٦٠ ميل/ساعة، دقيقة. إحسب زمن الرحلة بتطبيق طرق التقنيات الثلاثة:

١. ديفيدسون

Greenshields حر بنشبلدز

$$T_Q = T_0 rac{1-(1- au)Q/Q_{max}}{1-Q/Q_{max}}$$

$$T_Q = 10 \frac{1 - (1 - 0.1)1000/2000}{1 - 1000/2000} = 11 \text{ min.}$$

BPR .۲

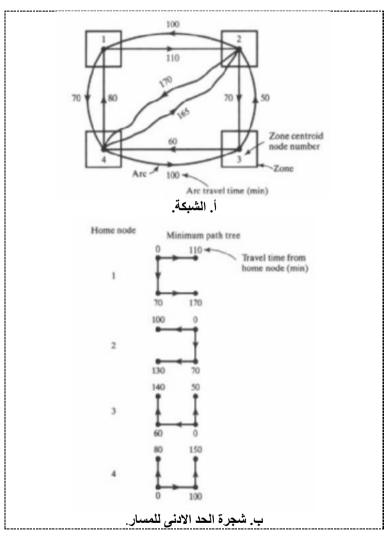
$$T_Q = T_0 \left[1 + \alpha \left(\frac{Q}{Q_{max}} \right)^{\beta} \right]$$

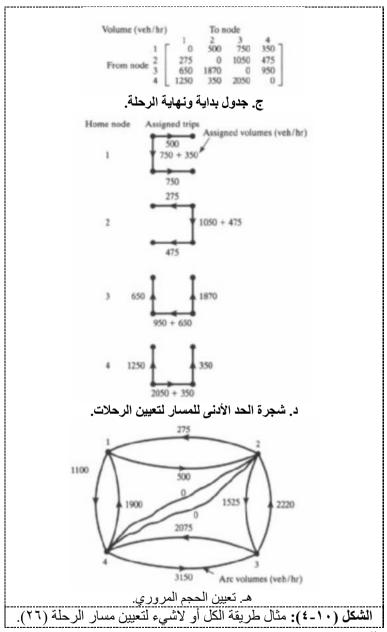
$$T_Q = 10 \left[1 + 0.474 \left(\frac{1000}{2000} \right)^4 \right] = 10.30 \, min.$$

۳. جرینشیلدز Greenshields

باستخدام المعادلة:
$$v = A - Bk$$

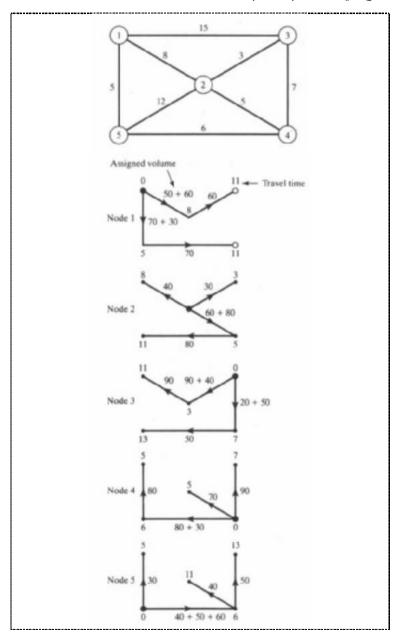
$$A = 60$$


$$q = \frac{A^2}{4B} = 2000 \Longrightarrow B = \frac{60 \times 60}{2000 \times 4} = 0.45$$


$$q = \left(\frac{A}{B}\right)v - \left(\frac{1}{B}\right)v^2$$

$$1000 = \left(\frac{60}{0.45}\right)v - \left(\frac{1}{0.45}\right)v^2$$

v = 51.2 mph and t = 11.7 min.


يوضح الشكل (١٠-٤) تطبيق تقنية تعيين الكل أو لا شيء. تظهر الشبكة في الشكل (١٠-٤-أ) وشجرة المسار الأدنى في الشكل (١٠-٤-ب). يتم تعيين التدفقات من بداية إلى الوجهة للرحلة لكل عقدة في جدول الرحلة الشكل (١٠-٤-ج) مع الروابط التي تشكل الحد الأدنى للمسار وتظهر في الشكل (١٠-٤-د). أما إجمالي الحجوم المرورية على كل رابط موضح في الشكل (١٠-٤-هـ).

مثال رقم ۲ يظهر الشكل (۱۰-۵) شبكة طرق تتكون من خمس عقد وثمانية روابط يتم عرض يظهر الشكل (۱۰-۵) شبكة طرق تتكون من خمس عقد وثمانية روابط التي عرض تكلفة النقل أيضًا وجدول الرحلات الذي يوضح عدد المركبات في الساعة التي ترغب في الإنتقال من عقدة إلى أخرى. قم بتعيين الرحلات على الشبكة بإستخدام طريقة الكل أو لا شيء. إن جميع الروابط ذات إتجاهين. إحسب الحجم المروري الإجمالي لكل رابط والتكلفة الإجمالية لجميع الرحلات.

<u>الحل:</u> الحل موضح في الشكل (١٠-٤).

From	1	2	3		4	5		
1	0	50	60	1	70 3	0	210	
2	40	0	30		60 8	0	210	
3	90	40	0	1	20 5	0	200	
4	80	70	90		0 3	0	270	
5	30	40	50		50	0	180	
	240	200	230	. 21	10 19	0	1070	
Link	Cost mi	Volum	me per Ho	our	Total Volume	Tot		
1-2	8	50 + 60		110	880			
2-1	8	40 + 90		130	1040			
1-3	15	0		0	0			
3-1	15	0			0		0	
1-5	5	70 +	30		100	50	00	
5-1	5	80 +	30		110	55	550	
2-3	3	60 +	30		90	270		
3-2	3	90 + 40			130	35	390 700	
2-4	5	60 + 80		140	71			
4-2	5	70 +	40		110	55	50	
2-5	12	0			0		0	
5-2	12	0			0		0	
3-4 7		20 + 50		70	70 490			
4-3	7	90 +	50		140	98	80	
4-5	6	80 +	50 + 80 +	30	240	156	60	
5-4	6	70 + 40 + 50 + 60		220	220 1320			

(Flow on Networks) التدفق على الشبكات (٣٠٢٠١٠

من وجهة نظر نظرية، من المثير للإهتمام معرفة كيفية توزيع تدفق المرور في الشبكة. يتم توضيح العديد من الحالات من خلال أمثلة عملية.

إثنين من الروابط في التوالي

يتم تُوصيل رابطين على التو الي، كما هو موضح في الشكل (١٠-٦)، مع دالة الكلفة كمابلي:

$$C_{AB} = 3 + f_{AB}$$
$$C_{BC} = 2 + 2f_{BC}$$

 $C_{BC} = 2 + 2f_{BC}$ f_{ij} او g الرابط g هي كلفة النقل على الرابط g هو g هو gالتدفق على طول الرابط jj للإستمرارية:

$$f_{AC} = f_{AB} = f_{BC}$$
$$C_{AC} = C_{AB} + C_{BC}$$

$$= (3 + f_{AB}) + (2 + 2f_{BC}) = 5 + 3f_{AC}$$

because $f_{AC} = f_{AB} = f_{BC}$

$$f_{AC} = 100$$

$$f_{AC} = 100$$

 $C_{AC} = 5 + (3 * 100) = 305 total cost$

$$C_{AB} = 3 + 100 = 103$$

$$C_{AB} = 2 + (2 + 100) = 202$$

المجموع= 305

لاحظ أنه عندما تكون الروابط في التوالي، نضيف تكلفة كل رابط للحصول على التكلفة الاحمالية

إثنين من الروابط في التوازي

يتم توصيل رابطين على التوازي، كما هو موضح في الشكل (١٠-٦-ب)، مع وجود دالة الكلفة كما يلى:

$$C_1 = 2 + f_1$$

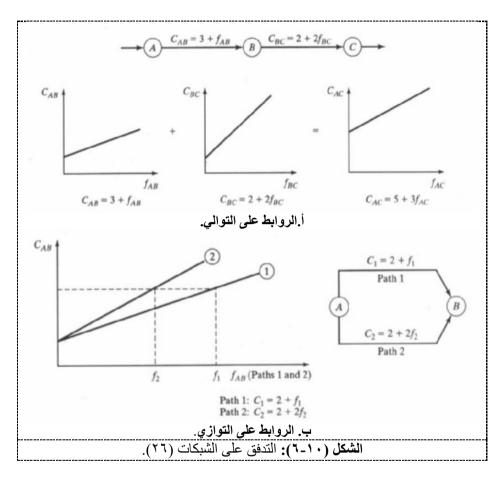
 $C_2 = 2 + 2f_2$

لإيجاد دالة الكلفة للمجموعة من A الىB. مع الإشارة الى الشكل (١٠٠-٠٠) وكمايلي:

$$f_{AB} = f_1 + f_2 f_1 = C_1 - 2$$

$$f_2 = \frac{C_2}{2} - 1$$

$$f_{AB}=f_1+f_2=rac{3C_1}{2}-3$$
 بما إن: $C_1=C_2$ مبدأ Wardrops بما إن $C_1=2+rac{2(f_1+f_2)}{2}$


$$C_{AB} = C_1 + C_2$$
 and $C_1 = C_2$

$$C_{AB} = C_1 + C_2 = 2C_2 = 2\left[2 + \frac{2(f_1 + f_2)}{3}\right]$$

المسار ۲ و f_1 مرکبات علی المسار ۲ و f_2 مرکبات علی المسار C_{AB}

كمثال: إذا كان:

$$f_{AB} = 99, C_{AB} = 2\left[2 + \left(\frac{2}{3} \times 99\right)\right] = 136, C_1 = 68, C_2 = 68$$

 $f_1 = 68 - 2 = 66, f_2 = 34 - 1 = 33$

(Transport Networks with a شبكات النقل مع دالة الطلب عدالة الطلب Demand Function)

الحالة 1: طريق مفرد (رابطان على التوالي)

كما وضح من قبل، لدينًا رابطان لهما دالة الكلفة كما هو مذكور في ما يلي مع الإشارة إلى الشكل (١٠-٧)، تكون دالة العرض كما يلي:

Link AB:
$$C_{AB} = 4 + 2f_{AB}$$

Link BC: $C_{BC} = 4 + 4f_{BC}$

$$f_{AC}=f_{AB}=f_{BC}$$
 لذلك: $C_{AC}=C_{AB}+C_{BC}=(4+2f_{AB})+(4+4f_{BC})=(8+6f_{AC})$

دالة الطلب:

$$C_{AC} = 248 - 4f_{AC}$$

مساواة دالة التوريد والطلب، كالتالي:

$$8 + 6f_{AC} = 248 - 4f_{AC}$$
$$10f_{AC} = 240 \implies f_{AC} = 24$$

 $C_{AB} = 4 + 2f_{AC} = 4 + 2(24) = 52$ because $f_{AC} = f_{AB}$ $C_{BC} = 4 + 4f_{BC} = 4 + 2(24) = 100$ because $f_{AC} = f_{BC}$

$$C_{AC}=152$$
 إن الكلفة الإجمالية $C_{AC}=8+6f_{AC}=8+6(24)=152$

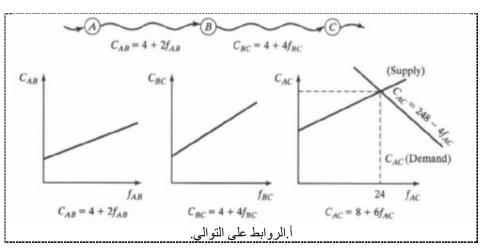
الحالة ٢: طربق ذات ر ابطبن على التوازي

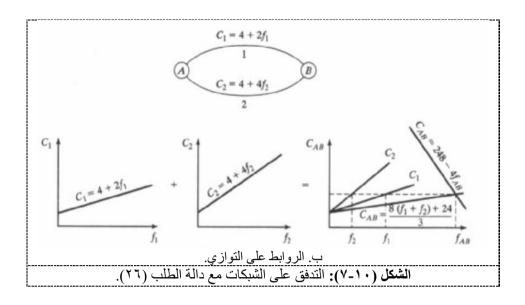
مرة أخرى، هذا المثال مشابه للمثال الذي تم حله من قبل، مع الإشارة إلى الشكل (١٠١-- ب)، نجد الأتى:

$$f_1 = \frac{c_1}{2} - 2$$

$$f_2 = \frac{c_2}{4} - 1$$

$$f_1 + f_2 = \left(\frac{c_1}{2} - 2\right) + \left(\frac{c_2}{4} - 1\right)$$


تبعا" الى مبدأ وWardrops لذلك: تبعا" الى مبدأ


$$f_1 + f_2 = \frac{3C_1 - 12}{4}$$

$$C_1 = \frac{4(f_1 + f_2) + 12}{3}$$

$$C_{AB} = C_1 + C_2 = 2C_1 = 2\left[\frac{4(f_1 + f_2) + 12}{3}\right]$$

$$=\frac{8(f_1+f_2)+24}{3}$$
 دالة التوريد:
$$\frac{8(f_1+f_2)+24}{3}=C_{AB}=\frac{8(f_{AB}+24)}{3}:$$
 دالة الطلب:
$$248-4f_{AB}=C_{AB}:$$
 دالة الطلب:
$$\frac{8(f_{AB}+24)}{3}=248-4f_{AB}$$

$$f_{AB}=36$$

$$C_{AB}=\frac{8(f_1+f_2)+24}{3}=104$$

$$C_{AB}=C_1+C_2$$

$$C_1=C_2=52$$

$$f_1=\frac{c_1}{2}-2=52-2=24$$

$$f_2=\frac{c_2}{4}-1=52/4-1=12$$

$$f_{AB}=f_1+f_2=36$$

مثال رقم ٣ طريق يربط بين مدينتين صغيرتين له الخصائص التالية: الزمن (دقيقة) للنقل على طريق يربط بين مدينتين صغيرتين له الخصائص مقطع معين من الطريق هو $t_1 = 12 + 0.01$ حيث أن q_1 : التدفق المروري q = 4800 - 100t: (مركبة/ساعة). دالة الطلب هي كالتالي:

- ١ احسب التدفق المكافئ لزمن الرحلة
- ٢. قسم إدارة المرور يريد إغلاق الطريق السريع وإستبدالها مع طريق أفضل له دالة توريد $t_2 = 12 + 0.006$ ، مع نفس دالة الطلب. ما مقدار الحجم المروري الإضافي بواسطة هذا الطريق الجديد.
- ٣. يرغب المواطنون الذين يستخدمون الطريق السريع الحالي في الإستمرار في إستخدامه، بالإضافة إلى المطالبة بالطريق السريع الجديد أيضا. ماذا سيكون التدفق المكافئ وزمن الرحلة لهذا السيناريو، بإفتراض أن الطلب على النقل لم يتغير (تنطبق مبادئ Wardrops).
- ٤. إذا تم بناء الطريق الجديد مع دالة التوريد $t_3 = 10 + 0.005 q_3$ ويستخدم الطريق الحالي كذلك، ماذا سبكون التدفق المكافئ الجديد و الزمن؟

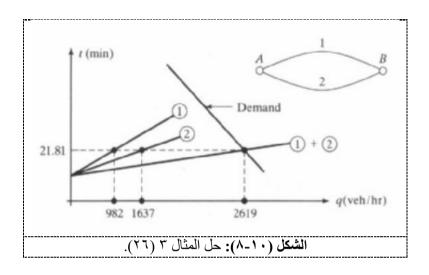
$$q_1 = 4800 - 100t_1$$
 .\\
 $t_1 = 12 + 0.01q_1$
 $q_1 = 4800 - 100(12 + 0.01q_1)$
 $q_1 = 1800 \frac{veh}{hr}$ and $t_1 = 30$ min.

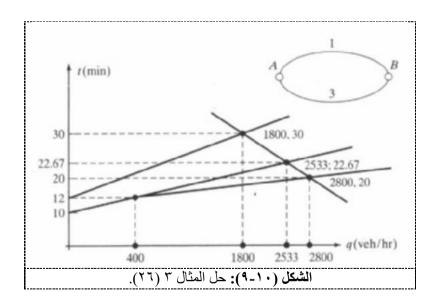
$$q_2 = 4800 - 100t_2$$
 and $t_2 = 12 + 0.006q_2$. Y $q_1 = 2250 \frac{veh}{hr}$ and $t_2 = 25.5$ min.

Richard Hilbert And $t_2 = 12.5$ min.

Richard Hilbert And $t_2 = 12.5$ min.

Richard Hilbert And Hilbert Hilbert And Hilbert Hilbert And Hilbert Hilbert And Hilbert Hilbert Hilbert Hilbert And Hilbert Hilb


. ۱و۲. کما وضح مسبقا":


> $q_1 = (t_1 - 12)/0.01$ $q_2 = (t_2 - 10)/0.05$

 $q_1 + q_3 = 100t_1 - 1200 + 200t_3 - 2000 = Q$ لكن $t_1 = t_3$ و لذلك:

$$300t_1 - 3200 = 4800 - 100t_3$$

$$t_1=t_3=20~min.$$
 $q_1=800\frac{veh}{hr}~and~q_2=2000\frac{veh}{hr}$

- 1. Lee, N.E., (1970) Travel and Transport through the Ages. Cambridge University Press.
- 2. Public Transportation- An Element of the Urban Transportation System. (1980) US Department of Transportation, Technology Sharing Report, FHWA-TS-80-211.
- 3. Barlow, P, (1978) Developing Goals and Objectives, Transport Planning Research Report No. 4, National Institute for Transport and Road Research, Pretoria.
- 4. Dimitriou, H.T., (1980) Transport Planning for Third World Cities, Routledge, London.
- 5. Kidmore, Owings, and Merrill (1970) Urban Design Guideline, Washington, D.C.
- 6. Transportation Engineering Journal, American Society of Civil Engineers, (1970) 96, 633-649.
- 7. Bayliss, W. et.al. (1969) New Dimensions in Strategic Transportation Planning, OECD.
- 8. Hitchcock, A. J.M., Planning of Transport Operations, Transport and Road Research Laboratory, Crow Thorne, UK, LR 671.
- 9. The Urban Edge, August 1981.
- 10. United Nations Population Division, World Urbanization Prospects, (1999) Revision, 2000.
- 11. Leibrand, K., (1970), Transportation and Town Planning, Leonard Hill, London.
- 12. Bansal, A.N., (1993) Coordination of Transport Systems, Urban Transportation, Indian National Academy of Engineering, IV, 15-21.
- 13. Singh, N.P., (2000), Problems relating to Metropolitan Transport in India and Possible Remedies, Urban Transport, 1(1), 1-23.
- 14. Anand, Y.P., (2000), Non-Motorized Transport in Urban India: An Overview, Urban Transport, 1(1), 75-91.
- 15. Reddy, T.S. (2000), Urban Transportation Planning Issues and Strategies, Urban Transport, 1(1), 51-62.
- 16. Victor, D.J., and Wolf, P. (1986) Technical Report on Joint Indo-German Research Project on Transportation System Management for Indian Cities. Madras/Aachen, April.
- 17. Kadiyali, L.R. (1983) Traffic Engineering and Transportation Planning. Khanna Publications, Delhi, 499.

- 18. Bureau of Public Roads, "Procedure manual, conducting a Home Interview Origin-Destination Survey", (1956), Volume 2B, Washington D.C.
- 19. Pollution Control Board, Annual Report 2004-05, CPCB website.
- 20. Emission Standards, Wikipedia, http://www. Wikipedia. Org/wiki/Emission-standard. (Access on 6 June 2023).
- 21. Handbook of transport modeling, HTM 2005, Handbooks of Transport, Volume 1, Pergamon.
- 22. American Society of Civil Engineers (ASCE)(1986). Urban Planning Guide, ASCE manual 49, ASCE, New York.
- 23. Hansen, Susan (1986). The Geography of Urban Transportation, Guilford Press, New York.
- 24. Khisty, C.J. (1981). Land Use Allocation Model for Small and Medium-Sized Cities. Transportation Research Record 730, Transportation Research Board, Washington, DC.
- 25. Transportation Research Board (TRB) (1999). NCHRP Report 423A, Land Use Impacts of Transportation: A Guide Book, Washington, DC.
- 26. Khisty J. and Lall, K. (2016) Transportation Engineering an Introduction. 3rd Edition, Copyright © 2016 Pearson India Education Services Pvt. Ltd. ISBN 978-93-325-6970-6.
- 27. Myer M. D. and Miller E.g. (1984) Urban Transportation Planning: A Decision Oriented Approach, McGraw Hill, New York.
- 28. Zainab Alkaissi, Z.A (1916) .Lectures in Transportation Planning. College of Engineering, Highway and Transportation Planning.
- 29. Transportation Research Board (TRB) (1978). Quick Response Urban Travel Estimation Technique, NCHRP Report 187, National Research Council, Washington, DC.
- 30. Sosslau, A.B, et.al. (1978). Quick Response Urban Travel Estimation Technique and Transferable Parameters: User's Guide, Report 187, Transportation Research Board, and Washington, DC.
- 31. Federal Highway Administration (FHWA) (1977). PLANEPAC/BACKPAC General information, U.S. Department of Transportation, Washington, DC.
- 32. Public Roads (1961). Traffic Approaching Cities, FHWA, U.S. Department of Transportation, Washington, DC.

إنطلاقا من مبدأ أهمية الكتاب التعليمي في العملية التعليمية وتوجيه الطلبة لفهم الأساسيات لمادة تخطيط النقل واهم الطرق والتقنيات المستخدمة في عملية تنبؤ الطلب على النقل ومساعدتهم على الفهم والتمكن من المادة العلمية. يتضمن الكتاب عشرة فصول تشرح ماهية تخطيط النقل الحضري وطرق تنبؤ الطلب على النقل مع التطبيقات لكافة النماذج المستخدمة.

المؤلف : أ.د. زينب احمد عبد الستارالقيسي

مكان العمل الحالي: الجامعة المستنصرية/كلية الهندسة/ قسم الطرق والنقل.

الشهادات و المؤهلات:

- دكتوراه فلسفة في هندسة الطرق والنقل / اختصاص مواصلات: كلية الهندسة، الجامعة المستنصرية، العراق، 2006.
- ماجستير في هندسة مدنية / اختصاص جيوتكنيك :كلية الهندسة ،جامعة النهرين، العراق، 2001. بكالوريوس هندسة مدنية / كلية الهندسة، جامعة النهرين
 - ، العراق 1998. عدد الكتب العلمية المؤلفة:(4) كتب علمية:
 - - محاضرات في هندسة المرور.
 - المختصر المفيد في هندسة المرور.
 - نظرية التدفق المرورى
 - عدد البحوث المنشورة:
- 40 بحث في مجلات علمية محلية وعالمية ضمن المستوعبات.
 - 30 بحث في مؤتمرات دولية ومحلية.

مكتب القمة باب العظم شارع المكاتب ٧٧٠٩٣٣٤١٠٨

رقم الإيداع في دار الكتب والوثائق ببغداد (٨٨٦) لسنة ٢٠٢٤