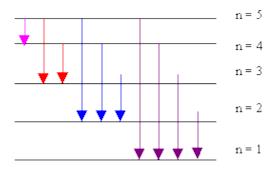
Solution Série 4

2020/2021

Exercice 1

10 raies possibles:



On peut utiliser indifféremment le modèle de Bohr ou la formule empirique de Balmer-Rydberg.

Modèle de Bohr : $E_n = -E_0 / n^2$

Formule de Rydberg: $1/\lambda = R_H (1/n^2 - 1/p^2)$

$$E_{n,p} = -E_0 / n^2 + E_0 / p^2 = E_0 (1/p^2 - 1/n^2)$$

$$E = h \cdot v \text{ et } v = C / \lambda$$

$$E_0 = h \ C \ R_H = 6,62 \ 10^{-34} \cdot 3 \ 10^8 \cdot 1,097 \ 10^7$$

$$E_0 = 2,18 \ 10^{-18} \ J (13,6 \ eV)$$

$$E_{n,p} = 2.18 \cdot 10^{-18} \cdot (1/p^2 - 1/n^2)$$

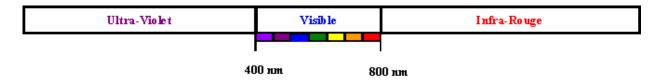
Raie - Transition	Energie (J)	Fréquence (10 ¹⁵ Hz)	Longueur d'onde (nm)	Domaine spectral	Série
5 > 4	4,905 .10 ⁻²⁰	0,074	4049	I.R	Bracket
5 → 3	1,55 .10 ⁻¹⁹	0,23	1281	I.R	Paschen
5 > 2	4,58. 10 ⁻¹⁹	0,69	433,8	Visible	Balmer
5 > 1	2,09 .10 ⁻¹⁸	3,16	94,9	U.V	Lyman
4 -> 3	1,06 .10 ⁻¹⁹	0,16	1874	I.R	Paschen
4 -> 2	4,09 .10 ⁻¹⁹	0,62	486	Visible	Balmer
4 -> 1	2,04 .10 ⁻¹⁸	3,09	97,2	U.V	Lyman
3 -> 2	3,02 .10 ⁻¹⁹	0,46	656	Visible	Balmer
3 → 1	1,93 .10 ⁻¹⁸	2,93	102,5	U.V	Lyman
2 -> 1	1,63 .10 ⁻¹⁸	2,5	121,5	U.V	Lyman

Remarques:

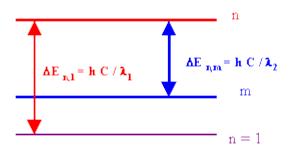
- Une erreur fréquente consiste à penser que les niveaux sont équidistants, ce qui diminuerait le nombre de raies.

2020/2021

on peut vérifier que la valeur obtenue pour l'est du bon ordre de grandeur si on se rappelle que la série de Lyman (n=1) est dans l'Ultra-Violet, que la série de Balmer (n=2) est dans le visible et que toutes les autres séries sont dans l'Infra.Rouge.



Exercice 2:



Exercice N°3

Le domaine du visible s'étalle approximativement de 400 nm à 800 nm.

L'ordre des couleurs est celui bien connu de l'arc en ciel : VIBVJOR soit Violet - Indigo - Bleu - Vert -Jaune - Orange - Rouge. Le violet correspond aux hautes énergies, aux hautes fréquences et aux faibles longueurs d'onde. Inversement, le rouge correspond aux faibles énergies, aux faibles fréquences et aux grandes longueurs d'onde.

2020/2021

Il est donc facile d'attribuer sa couleur à chaque raie par simple comparaison.

```
v = c / \lambda
E = h v = h C / \lambda
Raie 1 : \lambda_1 = 605 \text{ nm}
v_1 = 3 \cdot 10^8 / \cdot 605 \cdot 10^{-9} = 4,96 \cdot 10^{14} \text{ Hz}
E_1 = 6,62 \cdot 10^{-34} \cdot 4,96 \cdot 10^{14} = 3,28 \cdot 10^{-19} \text{ J}
```

Couleur jaune orangée (longueur d'onde élevée fréquence et énergie faibles)

```
Raie 2 : \lambda_2 = 461 \text{ nm}
?_1 = 3 \cdot 10^8 / 461 \cdot 10^{-9} = 6,51 \cdot 10^{14} \text{ Hz}
E_1 = 6,62 \cdot 10^{-34} \cdot 6,51 \cdot 10^{14} = 4,31 \cdot 10^{-19} \text{ J}
```

Couleur bleue (longueur d'onde faible fréquence et énergie élevées)

```
Exercice N°4 a-
```

```
\Delta E = E^0 (1/n^2 - 1/m^2)
(1/n^2 - 1/m^2) = \Delta E / E^0
Icin = 1
(1 - 1 / m^2) = \Delta E / E^0
1 / m^2 = 1 - (\Delta E / E^0) = 1 - (10,2 / 13,6) = 0,25
m^2 = 4 et m = 2
b-
\lambda = 1027 \text{ A}^{\circ} = 1027 \text{ } 10^{-10} \text{ m}
```

E = h C / λ = 6,62 10^{-34*} 310⁸ /1027 10⁻¹⁰= 1,934 10⁻¹⁸ J = 12,086 eV

2020/2021

$$\Delta E = E^0 (1 / n^2 - 1 / m^2)$$

$$(1/n^2 - 1/m^2) = \Delta E / E^0$$

Ici m = 3

$$(1/n^2 - 1/9) = \Delta E / E^0$$

$$1 / n^2 = 1 / 9 + (\Delta E / E^0) = 1 / 9 + (12,086 / 13,6) = 0,9998$$

$$n^2 = 1$$
 et $n = 1$

Exercice N°5

- a) E₁ = -24,6 eV puisque l'énergie d'ionisation est l'énergie à fournir pour arracher l'électron du niveau fondamental pour l'ammener au niveau ionisé correspondant à $n = \infty$.
- b) $\Delta E = 24.6 21.4 = 3.2 \text{ eV} = 5.12 \cdot 10^{-19} \text{ J}$

$$\Delta E = h C / \lambda \Rightarrow \lambda = h C / \Delta E = 6,62 \cdot 10^{-34} \cdot 3 \cdot 10^{8} / 5,12 \cdot 10^{-19} = 3,88 \cdot 10^{-7} \text{ m} = 388 \text{ nm}$$